• Title/Summary/Keyword: PD controller

Search Result 413, Processing Time 0.029 seconds

PD+I-type fuzzy controller using Simplified Indirect Inference Method

  • Kim, Ji-Hoon;Jeon, Hae-Jin;Chun, Kyung-Han;Park, Bong-Yeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.179.5-179
    • /
    • 2001
  • Generally, while PD-type fuzzy controller has good performance in transient period, it has uniform steady state error of response. To improve limitations of PD-type fuzzy controller, we propose a new fuzzy controller to improve the performance of transient response and to eliminate the steady state error of response. In this paper, PD-type fuzzy controller is used a simplified indirect inference method(SIIM). When the SIIM is applied, the proposed method has the capability of the high speed inference and adapting with increasing the number of the fuzzy input variables easily. The outputs of this controller are the output calculated by PD-type fuzzy controller and the accumulated error scaling factor. Here, the accumulated error scaling factor is adjusted by fuzzy rule according to the system state variables. To show the usefulness of the proposed controller, it is applied to 0-type 2nd-order linear system.

  • PDF

Optimum Tuning of Modified PID Controller using Properties of the Affine Set (아핀 집합의 특성을 이용한 변형된 PID 제어기의 최적 동조)

  • Kim Chang-Hyun;Lim Dong-Kyun;Suh Byung-Sulh
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.6
    • /
    • pp.15-22
    • /
    • 2005
  • In this paper, we propose a PID-PD controller and its tuning method to be modified form of PID controller that consist of the affine set of PID and PI-PD controller by analyzing relation between these controllers. The proposed tuning method controls the closed-loop system to locate between the step responses of system controlled by PID and PI-PD controller. The controller is designed by the optimum tuning method to minimize the proposed specific cost functions. Its effectiveness is examined by the case studies and their analysis.

Design of Nonlinear Fuzzy I+PD Controller Using Simplified Indirect Inference Method (간편간접추론방법을 이용한 비선형 퍼지 I+PD 제어기의 설계)

  • Chai, Chang-Hyun;Chae, Seok;Park, Jae-Wan;Yoon, Myong-Kee
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.2898-2901
    • /
    • 1999
  • This paper describes the design of nonlinear fuzzy I+PD controller using simplified indirect inference method. First, the fuzzy I+PD controller is derived from the conventional continuous time linear I+PD controller. Then the fuzzification, control-rule base, and defuzzification using SIIM in the design of the fuzzy controller are discussed in detail. The resulting controller is a discrete time fuzzy version of the conventional I+PD controller. which has the same linear structure. but are nonlinear functions of the input signals. The proposed controller enhances the self-tuning control capability. Particularly when the process to be controlled is nonlinear When the SIIM is applied, the fuzzy inference results can be calculated with splitting fuzzy variables into each action component and are determined as the functional form of corresponding variables. So the proposed method has the capability of the high speed inference and adapting with increasing the number of the fuzzy input variables easily. Computer simulation results have demonstrated the superior to the control performance of the one Proposed by D. Misir et at.

  • PDF

Control of Robot Manipulators Using PD-Sliding Mode hybrid Controller (PD-슬라이딩 모드 복합 제어기를 이용한 로봇 매니퓰레이터의 제어)

  • Lee, Kyu-Joon;Kyung, Tai-Hyun;Kim, Jong-Shik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.2
    • /
    • pp.89-96
    • /
    • 2002
  • A new chattering free PD-sliding mode hybrid control scheme is proposed for robot manipulators. This hybrid controller is composed of a PD controller and a semi-continuous sliding mode controller. It has a good robust performance in reaching mode which does not possess invariance property of sliding mode, and has chattering free characteristics in sliding mode. Thus, the PD-sliding mode hybrid controller has a good robust performance in the whole region. It is shown that the proposed control has a good transient response and trajectory tracking performance for a 2-link SCARA robot manipulator.

(The Speed Control of Induction Motor using PD Controller and Neural Networks) (PD 제어기와 신경회로망을 이용한 유도전동기의 속도제어)

  • Yang, Oh
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.2
    • /
    • pp.157-165
    • /
    • 2002
  • This paper presents the implementation of the speed control system for 3 phase induction motor using PD controller and neural networks. The PD controller is used to control the motor and to train neural networks at the first time. And neural networks are widely used as controllers because of a nonlinear mapping capability, we used feedforward neural networks(FNN) in order to simply design the speed control system of the 3 phase induction motor. Neural networks are tuned online using the speed reference, actual speed measured from an encoder and control input current to motor. PD controller and neural networks are applied to the speed control system for 3 phase induction motor, are compared with PI controller through computer simulation and experiment respectively. The results are illustrated that the output of the PD controller is decreased and feedforward neural networks act main controller, and the proposed hybrid controllers show better performance than the PI controller in abrupt load variation and the precise control is possible because the steady state error can be minimized by training neural networks.

Design of pre-compensator and PD controller based the PI control system (PI제어계 기반 전치보상기 및 PD제어기의 설계)

  • Ha, Hong-Gon;Lee, Yong-Jae;Han, Dae-Hyun;Heo, Gyeong-Yong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.1
    • /
    • pp.51-56
    • /
    • 2013
  • PID control systems are significantly utilized in industrial fields because of its multiple advantages. Many researches about more effective PID controllers to enhance control system performances have been addressed so far. This paper proposes a novel PI-PD control system with a pre-compensator which is configured with a pre-compensator and PD controller in PIcontrol system. The normal method is applied to the proposed control system for obtaining a simple first-order controller from cancelation of poles and zeros. We design a pre-compensator and PD controller by using parameters of PI controller and the transfer function of a plant. Computer simulation is carried out to demonstrate effectiveness of the proposed control system.

Modeling, Identification and Control of a Redundant Planar 2-DOF Parallel Manipulator

  • Zhang, Yao-Xin;Cong, Shuang;Shang, Wei-Wei;Li, Ze-Xiang;Jiang, Shi-Long
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.5
    • /
    • pp.559-569
    • /
    • 2007
  • In this paper, the dynamic controller design problem of a redundant planar 2-dof parallel manipulator is studied. Using the Euler-Lagrange equation, we formulate the dynamic model of the parallel manipulator in the joint space and propose an augmented PD controller with forward dynamic compensation for the parallel manipulator. By formulating the controller in the joint space, we eliminate the complex computation of the Jacobian matrix of joint angles with end-effector coordinate. So with less computation, our controller is easier to implement, and a shorter sampling period can be achieved, which makes the controller more suitable for high-speed motion control. Furthermore, with the combination of static friction model and viscous friction model, the active joint friction of the parallel manipulator is studied and compensated in the controller. Based on the dynamic parameters of the parallel manipulator evaluated by direct measurement and identification, motion control experiments are implemented. With the experiments, the validity of the dynamic model is proved and the performance of the controller is evaluated. Experiment results show that, with forward dynamic compensation, the augmented PD controller can improve the tracking performance of the parallel manipulator over the simple PD controller.

Simple PD+l-type fuzzy controller design

  • Kim, Jae-Hyoung;Kim, Ji-Hoon;Park, Bong-Yeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.61.4-61
    • /
    • 2002
  • Introduction $\textbullet$ Simple PD-type Fuzzy Controller $\textbullet$ Simple PD+l-type fuzzy controller design $\textbullet$ Simulation $\textbullet$ Conclusion $\textbullet$ References

  • PDF

Hybrid PD-Servo State Feedback Control Algorithm for Swing up Inverted Pendulum System

  • Nundrakwang, Songmoung;Benjanarasuth, Taworn;Ngamwiwit, Jongkol;Komine, Noriyuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.690-693
    • /
    • 2005
  • In this paper, a hybrid PD-servo state feedback control algorithm for swing up inverted pendulum system is proposed. It consists of two parts. The first part is the PD position control for swinging up the pendulum from the natural pendent position to around the upright position and the second part is the servo state feedback control for stabilizing the inverted pendulum in upright position. The first controller is PD controller and it is tuned to control the position of the pendulum by moving the cart back and forth until the pendulum swings up around the upright position. Then the second controller will be switched to stabilize the inverted pendulum in its upright position. The controller in this stage is the servo state feedback controller designed by pole placement. Experimental results of PD type swinging up control system, of stabilizing servo state feedback control system and of the proposed hybrid PD-servo state feedback control system to swing up and stabilize inverted pendulum show that the proposed method is effective and reliable for actual implementation while it is simple.

  • PDF

An Optimal Tuning of PI-PD Controller Via LQR (LQR을 사용한 최적 PI-PD제어기 동조)

  • Kang, Keun-Hyoung;Suh, Byung-Suhl
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.109-112
    • /
    • 2005
  • This paper presents an optimal and robust PI-PD controller design method for the second-order systems both with dead time and without dead time to satisfy the design specifications in the time domain via LQR design technique. The optimal tuning method of PI-PD controller are also developed by setpoint weighting and neural networks. It is shown that the simulation results show significantly improved performance by proposed method.

  • PDF