• 제목/요약/키워드: PCR condition

검색결과 338건 처리시간 0.025초

Comparison of Non-amplified and Amplified DNA Preparation Methods for Array-comparative Gnomic Hybridization Analysis

  • Joo, Hong-Jin;Jung, Seung-Hyun;Yim, Seon-Hee;Kim, Tae-Min;Xu, Hai-Dong;Shin, Seung-Hun;Kim, Mi-Young;Kang, Hyun-Mi;Chung, Yeun-Jun
    • Molecular & Cellular Toxicology
    • /
    • 제4권3호
    • /
    • pp.246-252
    • /
    • 2008
  • Tumor tissue is usually contaminated by normal tissue components, which reduces the sensitivity of analysis for exploring genetic alterations. Although microdissection has been adopted to minimize the contamination of tumor DNA with normal cell components, there is a concern over the amount of microdissected DNA not enough to be applied to array-CGH reaction. To amplify the extracted DNA, several whole genome amplification (WGA) methods have been developed, but objective comparison of the array-CGH outputs using different types of WGA methods is still scarce. In this study, we compared the performance of non-amplified microdissected DNA and DNA amplified in 2 WGA methods such as degenerative oligonucleotide primed (DOP)-PCR, and multiple strand displacement amplification (MDA) using Phi 29 DNA polymerase. Genomic DNA was also used to make a comparison. We applied those 4 DNAs to whole genome BAC array to compare the false positive detection rate (FPDR) and sensitivity in detecting copy number alterations under the same hybridization condition. As a result microdissected DNA method showed the lowest FPDR and the highest sensitivity. Among WGA methods, DOP-PCR amplified DNA showed better sensitivity but similar FPDR to MDA-amplified method. These results demonstrate the advantage and applicability of microdissection for array-CGH analysis, and provide useful information for choosing amplification methods to study copy number alterations, especially based on precancerous and microscopically invaded lesions.

Characterization of MHC DRB3.2 Alleles of Crossbred Cattle by Polymerase Chain Reaction-Restriction Fragment Length Polymorphism

  • Paswan, Chandan;Bhushan, Bharat;Patra, B.N.;Kumar, Pushpendra;Sharma, Arjava;Dandapat, S.;Tomar, A.K.S.;Dutt, Triveni
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권9호
    • /
    • pp.1226-1230
    • /
    • 2005
  • The present investigation was undertaken to study the genetic polymorphism of the DRB3 exon 2 in 75 crossbred cattle by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique. Five genotypes i.e. HaeIII-a, HaeIII-b, HaeIII-e, HaeIII-ab and HaeIII-ae were observed when the 284 bp PCR products were digested with HaeIII restriction enzyme. The corresponding frequencies of these patterns were 0.53, 0.04, 0.01, 0.38 and 0.04, respectively. Digestion with RsaI restriction enzyme resolved 24 different restriction patterns. The frequencies of these patterns ranged from 0.013 (RsaI-f, RsaI-k and RsaI-c/n) to 0.120 (RsaI-n). The results revealed that the crossbred cows belonged to the RsaI patterns namely b, k, l, a/l, d/s, l/n, l/o and m/n, whose corresponding frequencies were 0.027, 0.013, 0.040, 0.027, 0.040, 0.067, 0.027 and 0.067, respectively. Digestion of the 284 bp PCR product of DRB3.2 gene with PstI in the crossbred cattle did not reveal any restriction site. These results suggested the absence of the recognition site in some of the animals. These results also revealed that the crossbred cows studied were in homozygous as well as heterozygous condition. On the basis of the above results it can be concluded that the DRB3.2 gene was found to be highly polymorphic in the crossbred cattle population.

Isolation and Identification of Lactic Acid Bacteria from Traditional Dairy Products in Baotou and Bayannur of Midwestern Inner Mongolia and q-PCR Analysis of Predominant Species

  • Wang, Dan;Liu, Wenjun;Ren, Yan;De, Liangliang;Zhang, Donglei;Yang, Yanrong;Bao, Qiuhua;Zhang, Heping;Menghe, Bilige
    • 한국축산식품학회지
    • /
    • 제36권4호
    • /
    • pp.499-507
    • /
    • 2016
  • In this study, traditional culture method and 16S rRNA gene analysis were applied to reveal the composition and diversity of lactic acid bacteria (LAB) of fermented cow milk, huruud and urum from Baotou and Bayannur of midwestern Inner Mongolia. Also, the quantitative results of dominant LAB species in three different types of dairy products from Baotou and Bayannur were gained by quantitative polymerase chain reaction (q-PCR) technology. Two hundred and two LAB strains isolated from sixty-six samples were identified and classified into four genera, namely Enterococcus, Lactococcus, Lactobacillus, Leuconostoc, and twenty-one species and subspecies. From these isolates, Lactococcus lactis subsp. lactis (32.18%), Lactobacillus plantarum (12.38%) and Leuconosto mesenteroides (11.39%) were considered as the dominated LAB species under the condition of cultivating in MRS and M17 medium. And the q-PCR results revealed that the number of dominant species varied from samples to samples and from region to region. This study clearly shows the composition and diversity of LAB existing in fermented cow milk, huruud and urum, which could be considered as valuable resources for LAB isolation and further probiotic selection.

혐기성 수소생산 시 운전 pH 변화에 따른 미생물의 군집 변화 (Change of Microbial Communities in Fermentative Hydrogen Production at Difference Cultivation pHs)

  • 전윤선;이관용;조윤아;이태진
    • 대한환경공학회지
    • /
    • 제30권12호
    • /
    • pp.1239-1244
    • /
    • 2008
  • 본 연구는 혐기성 발효에 의한 수소 생산 시 pH가 3에서 10까지 단계적으로 변화되는 조건에서 미생물의 군집 변화를 살펴보기 위해 PCR-DGGE를 실시하였다. 최대 수소생산 수율은 pH 5에서 1.8 mol $H_2$/mol substrate로 측정 되었으며, 각 pH에서 미생물의 성장량과 수소생산효율의 비례적 상관관계가 나타나지 않았다. 각 pH에서 채취된 미생물의 16S rDNA을 target으로 한 PCRDGGE를 수행한 결과, pH 조건에 따라 미생물의 군집 조성에 변화가 있음을 확인할 수 있었다. 미생물 종의 대부분은 Klebsiella 속으로 규명되었으며 Streptococcus 속과 Clostridium 속 미생물이 수소생산 효율에 많은 영향을 미치는 것으로 판단되었다.

Specific and Sensitive Primers Developed by Comparative Genomics to Detect Bacterial Pathogens in Grains

  • Baek, Kwang Yeol;Lee, Hyun-Hee;Son, Geun Ju;Lee, Pyeong An;Roy, Nazish;Seo, Young-Su;Lee, Seon-Woo
    • The Plant Pathology Journal
    • /
    • 제34권2호
    • /
    • pp.104-112
    • /
    • 2018
  • Accurate and rapid detection of bacterial plant pathogen is the first step toward disease management and prevention of pathogen spread. Bacterial plant pathogens Clavibacter michiganensis subsp. nebraskensis (Cmn), Pantoea stewartii subsp. stewartii (Pss), and Rathayibacter tritici (Rt) cause Goss's bacterial wilt and blight of maize, Stewart's wilt of maize and spike blight of wheat and barley, respectively. The bacterial diseases are not globally distributed and not present in Korea. This study adopted comparative genomics approach and aimed to develop specific primer pairs to detect these three bacterial pathogens. Genome comparison among target pathogens and their closely related bacterial species generated 15-20 candidate primer pairs per bacterial pathogen. The primer pairs were assessed by a conventional PCR for specificity against 33 species of Clavibacter, Pantoea, Rathayibacter, Pectobacterium, Curtobacterium. The investigation for specificity and sensitivity of the primer pairs allowed final selection of one or two primer pairs per bacterial pathogens. In our assay condition, a detection limit of Pss and Cmn was $2pg/{\mu}l$ of genomic DNA per PCR reaction, while the detection limit for Rt primers was higher. The selected primers could also detect bacterial cells up to $8.8{\times}10^3cfu$ to $7.84{\times}10^4cfu$ per gram of grain seeds artificially infected with corresponding bacterial pathogens. The primer pairs and PCR assay developed in this study provide an accurate and rapid detection method for three bacterial pathogens of grains, which can be used to investigate bacteria contamination in grain seeds and to ultimately prevent pathogen dissemination over countries.

Development of a diagnostic method for human enteric Adenovirus-41 with rapid, specific and high sensitivity using the loop-mediated isothermal amplification assay

  • Lee, Jin-Young;Rho, Jae Young
    • 농업과학연구
    • /
    • 제47권3호
    • /
    • pp.673-681
    • /
    • 2020
  • Human enteric Adenovirus 41 (HueAdV-41) is a major waterborne virus that causes human gastroenteritis and is classified as a viral group I double-strand DNA virus, Adenoviridae. HueAdV-41 has been detected with the polymerase chain reaction (PCR) in various samples such as ground water. However, the PCR-based diagnostic method has problems such as reaction time, sensitivity, and specificity. Thus, the loop-mediated isothermal amplification (LAMP) assay has emerged as an excellent method for field applications. In this study, we developed a LAMP system that can rapidly detect HueAdV-41 with high specificity and sensitivity. HueAdV-41 specific LAMP primer sets were tested through a specific, non-specific selection and sensitivity test for three prepared LAMP primer sets, of which only one primer set and optimum reaction temperature were selected. The developed LAMP primer set condition was confirmed as 63℃, and the sensitivity was 1 copy. In addition, to confirm the system, a LAMP positive reaction was developed with the restriction enzyme Taq I (T/GCC). The developed method in this study was more specific, rapid (typically within 2 - 3 hours), and highly sensitive than that of the conventional PCR method. To evaluate and verify the developed LAMP assay, an artificial infection test was done with five cDNAs from groundwater samples, and the results were compared to those of the conventional PCR method. We expect the developed LAMP primer set will be used to diagnose HueAdV-41 from various samples.

Changes in the ruminal fermentation and bacterial community structure by a sudden change to a high-concentrate diet in Korean domestic ruminants

  • Lee, Mingyung;Jeong, Sinyong;Seo, Jakyeom;Seo, Seongwon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권1호
    • /
    • pp.92-102
    • /
    • 2019
  • Objective: To investigate changes in rumen fermentation characteristics and bacterial community by a sudden change to a high concentrate diet (HC) in Korean domestic ruminants. Methods: Major Korean domestic ruminants (each of four Hanwoo cows; $545.5{\pm}33.6kg$, Holstein cows; $516.3{\pm}42.7kg$, and Korean native goats; $19.1{\pm}1.4kg$) were used in this experiment. They were housed individually and were fed ad libitum with a same TMR (800 g/kg timothy hay and 200 g/kg concentrate mix) twice daily. After two-week feeding, only the concentrate mix was offered for one week in order to induce rapid rumen acidosis. The rumen fluid was collected from each animals twice (on week 2 and week 3) at 2 h after morning feeding using an oral stomach tube. Each collected rumen fluid was analyzed for pH, volatile fatty acid (VFA), and $NH_3-N$. In addition, differences in microbial community among ruminant species and between normal and an acidosis condition were assessed using two culture-independent 16S polymerase chain reaction (PCR)-based techniques (terminal restriction fragment length polymorphism and quantitative real-time PCR). Results: The HC decreased ruminal pH and altered relative concentrations of ruminal VFA (p<0.01). Total VFA concentration increased in Holstein cows only (p<0.01). Terminal restriction fragment length polymorphism and real-time quantitative PCR analysis using culture-independent 16S PCR-based techniques, revealed rumen bacterial diversity differed by species but not by HC (p<0.01); bacterial diversity was higher in Korean native goats than that in Holstein cows. HC changed the relative populations of rumen bacterial species. Specifically, the abundance of Fibrobacter succinogenes was decreased while Lactobacillus spp. and Megasphaera elsdenii were increased (p<0.01). Conclusion: The HC altered the relative populations, but not diversity, of the ruminal bacterial community, which differed by ruminant species.

Development of Molecular Diagnostic System with High Sensitivity for the Detection of Human Sapovirus from Water Environments

  • Lee, Siwon;Bae, Kyung Seon;Lee, Jin-Young;Joo, Youn-Lee;Kim, Ji-Hae;You, Kyung-A
    • 대한의생명과학회지
    • /
    • 제27권1호
    • /
    • pp.35-43
    • /
    • 2021
  • Human Sapovirus (HuSaV) is one of the major causes of acute gastroenteritis in humans, and it is used as a molecular diagnostic technique based on polymerase chain reaction (PCR) from humans, food, shellfish, and aquatic environments. In this study, the HuSaV diagnosis technique was used in an aquatic environment where a number of PCR inhibitors are included and pathogens, such as viruses, are estimated to exist at low concentration levels. HuSaV-specific primers are improved to detect 38 strains registered in the National Center for Biotechnology Information (NCBI). The established optimal condition and the composition, including the RT-nested PCR primers and SL® Non-specific reaction inhibitor, were found to have 100 times higher sensitivity based on HuSaV plasmid than the previously reported methods (100 ag based on HuSaV plasmid 1 ng/μL). Through an artificial infection test, the developed method was able to detect at least 1 fg/μL of HuSaV plasmid contaminated with total nucleic acid extracted from groundwater. In addition, RT-nested PCR primer sets for HuSaV detection can react, and a positive control is developed to verify false positives. This study is expected to be used as a HuSaV monitoring method in the future and applied to the safety response to HuSaV from water environments.

일반 프라이머를 이용한 PCR의 식품원료 진위 판별에 적용 (Application for Identification of Food Raw Materials by PCR using Universal Primer)

  • 박용춘;진상욱;임지영;김규헌;이재황;조태용;이화정;한상배;이상재;이광호;윤혜성
    • 한국식품위생안전성학회지
    • /
    • 제27권3호
    • /
    • pp.317-324
    • /
    • 2012
  • 본 연구는 식품원료의 진위여부를 판별하기 위한 시험법으로 일반 프라이머를 이용한 DNA barcode 기법을 도입하였다. 동물성식품원료의 경우 미토콘드리아 DNA 중 cytochrome oxidase subunit I(COI) 부위 검출을 위하여 디자인된 프라이머(LCO1490/HCO2198 및 VF2/FISH R2)와 cytochrome b(cyt b) 부위 검출을 위하여 디자인된 프라이머(L14724/H15915)를 사용하였다. 상기 3 종류의 프라이머를 사용하여 가축류 6종(소, 돼지, 염소, 양, 말 및 사슴), 가금류 4종(닭, 오리, 칠면조 및 타조), 어류 7종(명태, 대구, 청대구, 청어, 송어, 다랑어 및 우럭)을 대상으로 PCR 후 전기영동하여 예상되는 PCR 산물의 생성 유무를 확인하였다. 가축류 6종에 대하여는 LCO1490/HCO2198, VF2/FISH R2 및 L14724/H15915 프라이머를 사용한 경우 COI 및 cyt b가 모두 검출되었으며, 가금류 4종은 LCO1490/HCO2198 및 VF2/FISH R2 프라이머를 사용한 경우만 COI이 검출되었다. 또한 어류 7종은 VF2/FISH R2 프라이머를 사용한 경우에만 COI 부위가 검출됨을 확인하였다. 식물의 경우 엽록체 DNA 부위를 이용하여 디자인된 3 종류의 프라이머(trnH/psbA, rpoB 1F/4R 및 rbcL 1F/724R)를 사용하였다. 각각의 프라이머를 이용하여 식물 5종(마늘, 양파, 무, 녹차 및 시금치)에 대하여 실험한 결과 3종류의 프라이머에서 PCR의 산물을 모두 확인하였으며 trnH/psbA 프라이머의 경우 식물 종마다 PCR 산물의 크기는 다르게 검출되었다. 본 연구에서는 17종의 식품원료별 일반 프라이머 및 PCR 조건을 확립하였으며, 생산된 PCR 산물을 대상으로 염기서열을 결정하고 유전자은행에 있는 염기서열과 DB 비교 분석을 통하여 식품에 사용된 원료의 진위여부 판별에 적용이 가능할 것으로 기대된다.

배추 유래 저온 저항성 관련 유전자, BrCSR의 특성 분석 (Characterization of a Cold Tolerance-related Gene, BrCSR, Derived from Brassica rapa)

  • 유재경;박영두
    • 원예과학기술지
    • /
    • 제32권1호
    • /
    • pp.91-99
    • /
    • 2014
  • 본 연구는 배추에서의 저온 저항성 유전자를 개발하는데 목적이 있으며 이를 위해 먼저 저온($4^{\circ}C$) 스트레스가 처리된 내혼계배추를 대상으로 한 KBGP-24K oligo chip의 결과 [BrEMD(Brassica rapa EST and Microarray Database)]를 분석하였다. 그 결과 23,929개의 배추 unigene 중 저온 처리시 대조군 대비 5배 이상 발현이 증가하는 417개(1.7%)의 저온 반응 유전자를 1차 선발하고, 이들 중 기능이 정확히 알려지지 않았으나 완전장을 갖추고 있는 BrCSR로 명명한 유전자를 선발하였다. 이 유전자의 저온 저항성을 분석하기 위하여 형질전환용 과발현 vector인 pSL101 binary vector를 제작하여 담배에 형질전환시켰다. BrCSR이 과발현된 $T_1$ 세대 담배 형질전환체들은 PCR과 Southern hybridization 분석에 의해 선발하였고, BrCSR의 기능은 저온 처리 시 유전자의 발현 수준 분석과 표현형 검정을 통해 확인하였다. Quantitative real-time RT-PCR과 Northern blot hybridization 분석 결과, 형질전환 담배에서 BrCSR의 발현이 대조군보다 약 2배 정도 높게 발현되었으며 실제로 $4^{\circ}C$ 처리 후 표현형 분석에서 BrCSR이 과발현된 형질전환체들이 대조군보다 우수한 저온 저항성을 보여 주었다. 위 결과들에 근거하여 BrCSR 유전자가 저온 환경 하에서 식물의 생장과 저항성 향상에 중요한 역할을 담당하고 있음을 확인할 수 있었다.