• Title/Summary/Keyword: PCB reliability test

Search Result 79, Processing Time 0.021 seconds

Theoretical Heat Flow Analysis and Vibration Characteristics During Transportation of PCS(Power Conversion System) for Reliability (전력변환장치 캐비넷에서의 내부발열 개선을 위한 열유동 분석 및 유통안전성 향상을 위한 진동특성 분석)

  • Joo, Minjung;Suh, Sang Uk;Oh, Jae Young;Jung, Hyun-Mo;Park, Jong-Min
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.2
    • /
    • pp.143-149
    • /
    • 2022
  • PCS needs to freely switch AC and DC to connect the battery, external AC loads and renewable energy in both directions for energy efficiency. Whenever converting happens, power loss inevitably occurs. Minimization of the power loss to save electricity and convert it for usage is a very critical function in PCS. PCS plays an important role in the ESS(Energy Storage System) but the importance of stabilizing semiconductors on PCB(Printed Circuit Board) should be empathized with a risk of failure such as a fire explosion. In this study, the temperature variation inside PCS was reviewed by cooling fan on top of PCS, and the vibration characteristics of PCS were analyzed during truck transportation for reliability of the product. In most cases, a cooling fan is mounted to control the inner temperature at the upper part of the PCS and components generating the heat placed on the internal aluminum cooling plate to apply the primary cooling and the secondary cooling system with inlet fans for the external air. Results of CFD showed slightly lack of circulating capacity but simulated temperatures were durable for components. The resonance points of PCS were various due to the complexity of components. Although they were less than 40 Hz which mostly occurs breakage, it was analyzed that the vibration displacement in the resonance frequency band was very insufficient. As a result of random-vibration simulation, the lower part was analyzed as the stress-concentrated point but no breakage was shown. The steel sheet could be stable for now, but for long-term domestic transportation, structural coupling may occur due to accumulation of fatigue strength. After the test completed, output voltage of the product had lost so that extra packaging such as bubble wrap should be considered.

Influence of complex environment test on lead-free solder joint reliability (온도변화에 따른 진동의 무연솔더 접합부 신뢰성에 미치는 영향)

  • Sa, Yoon-Ki;Yoo, Se-Hoon;Kim, Yeong-K.;Lee, Chang-Woo
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.77-77
    • /
    • 2009
  • ELV(; End of Life Vehicles)를 비롯한 최근 환경 동향은 자동차 전장 모듈에 대하여 다양한 무연 솔더 적용을 요구하고 있다. 특히 자동차 엔진룸과 트랜스미션은 가동 중 고온 및 진동의 지속적인 영향을 받기 때문에 이와 유사한 환경에서의 신뢰성 연구가 필요한 시점이다. 이에 본 연구에서는 Sn3.5Ag, Sn0.7Cu, Sn5.0Sb 솔더 조성에 대하여 복합환경 조건하에서 접합부 신뢰성을 평가하였다. 복합환경을 구현하기 위하여 $-40{\sim}150^{\circ}C$ 범위의 온도 사이클과 랜덤 진동을 동시에 인가하였으며, 진동 가속도 3G, 진동주파수는 10~1000Hz 로 설정하여 자동차 환경을 충족하였다. 복합시험의 1 cycle 은 20 시간이며, 총 120 시간의 시험 동안 진동의 영향 및 진동과 고온이 동시에 작용하였을 경우의 영향에 대해 비교하였다. 테스트 모듈 제작을 위해 450 um 의 솔더볼이 적용되었으며, 각 조성의 솔더볼을 이용하여 BGA test chip 제작하였고, 제작된 BGA test chip 은 다시 daisy chain PCB 위에 실장 및 리플로우 공정을 통해 접합되었다. 테스트 동안 In-situ 로 저항의 변화를 관찰하여 파단의 유무를 판단하였고 전자주사현미경을 통해 파괴 기전을 평가하였다. 복합시험 시간에 따른 전단강도를 측정하였으며, 각 조성에 대하여 상이한 전단강도 변화를 관찰하였다. 계면 IMC 형상은 전단강도 변화에 영향을 주었으며, 특히 높은 온도가 IMC 성장을 촉진시켜 전단강도 감소에 영향을 주었다. 본 복합환경 시험 조건에서는 Sn0.7Cu 가 가장 안정적이었으며, 파단면을 관찰한 결과 연성파괴 모드가 관찰되었다.

  • PDF

Design and Reliability Evaluation of 5-V output AC-DC Power Supply Module for Electronic Home Appliances (가전기기용 직류전원 모듈 설계 및 신뢰성 특성 해석)

  • Mo, Young-Sea;Song, Han-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.504-510
    • /
    • 2017
  • This paper presents an AC-DC power module design and evaluates its efficiency and reliability when used for electronics appliances. This power module consists of a PWM control IC, power MOSFETs, a transformer and several passive devices. The module was tested at an input voltage of 220V (RMS) (frequency 60 Hz). A test was conducted in order to evaluate the operation and power efficiency of the module, as well as the reliability of its protection functions, such as its over-current protection (OVP), overvoltage protection (OVP) and electromagnetic interference (EMI) properties. Especially, we evaluated the thermal shut-down protection (TSP) function in order to assure the operation of the module under high temperature conditions. The efficiency and reliability measurement results showed that at an output voltage of 5 V, the module had a ripple voltage of 200 mV, power efficiency of 73 % and maximum temperature of $80^{\circ}C$ and it had the ability to withstand a stimulus of high input voltage of 4.2 kV during 60 seconds.

Experimental Verification of Heat Sink for FPGA Thermal Control (FPGA 열제어용 히트싱크 효과의 실험적 검증)

  • Park, Jin-Han;Kim, Hyeon-Soo;Ko, Hyun-Suk;Jin, Bong-Cheol;Seo, Hak-Keum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.9
    • /
    • pp.789-794
    • /
    • 2014
  • The FPGA is used to the high speed digital satellite communication on the Digital Signal Process Unit of the next generation GEO communication satellite. The high capacity FPGA has the high power dissipation and it is difficult to satisfy the derating requirement of temperature. This matter is the major factor to degrade the equipment life and reliability. The thermal control at the equipment level has been worked through thermal conduction in the space environment. The FPGA of CCGA or BGA package type was mounted on printed circuit board, but the PCB has low efficient to the thermal control. For the FPGA heat dissipation, the heat sink was applied between part lid and housing of equipment and the performance of heat sink was confirmed via thermal vacuum test under the condition of space qualification level. The FPGA of high power dissipation has been difficult to apply for space application, but FPGA with heat sink could be used to space application with the derating temperature margin.

A Study on Properties of Pb-free Solder Joints Combined Sn-Bi-Ag with Sn-Ag-Cu by Conditions of Reflow Soldering Processes (리플로우 솔더링 공정 조건에 따른 Sn-Bi-Ag와 Sn-Ag-Cu 복합 무연 솔더 접합부 특성 연구)

  • Kim, Jahyeon;Cheon, Gyeongyeong;Kim, Dongjin;Park, Young-Bae;Ko, Yong-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.3
    • /
    • pp.55-61
    • /
    • 2022
  • In this study, properties of Pb-free solder joints which were combined using Sn-3.0Ag-0.5Cu (SAC305) Pb-free solder with a mid-temperature type of melting temperature and Sn-57Bi-1Ag Pb-free solder with a low-temperature type of melting temperature were reported. Combined Pb-free solder joints were formed by reflow soldering processes with ball grid array (BGA) packages which have SAC305 solder balls and flame retardant-4 (FR-4) printed circuit boards (PCBs) which printed Sn-57Bi-1Ag solder paste. The reflow soldering processes were performed with two types of temperature profiles and interfacial properties of combined Pb-free solder joints such as interfacial reactions, formations of intermetallic compounds (IMCs), diffusion mechanisms of Bi, and so on were analyzed with the reflow process conditions. In order to compare reliability characteristics of combined Pb-free solder joints, we also conducted thermal shock test and analyzed changes of mechanical properties for joints from a shear test during the thermal shock test.

Reliability evaluation of 1608 chip joint using Sn8Zn3Bi solder under high temperature and high humidity (Sn8Zn3Bi 솔더를 이용한 1608 칩 솔더링부의 고온고습 신뢰성 평가)

  • Kim, Gyu-Seok;Lee, Yeong-U;Hong, Seong-Jun;Jeong, Jae-Pil;Mun, Yeong-Jun;Lee, Ji-Won;Han, Hyeon-Ju;Kim, Mi-Jin
    • Proceedings of the KWS Conference
    • /
    • 2005.11a
    • /
    • pp.228-230
    • /
    • 2005
  • Sn-8wt%Zn-3wt%Bi (이하, Sn-8Zn-3Bi) 솔더의 장기 신뢰성을 평가하기 위하여 고용고습시험을 행하였다. 고온 고습 시험은 $85^{\circ}C$/85RH 조건에서 1000 시간 동안 하였다. 접합 기판으로는 각각 OSP (Organic Solderability Preservative), Sn 그리고 Ni/Au 처리를 한 PCB(Printed Circuit Board) 패드를 사용하였다. 접합에 사용한 부품은 1608Chip 으로 MLCC(Multi Layer Ceramic Capacitor 이하, 1608C) 와 Chip Resister(이하, 1608R)을 사용하였으며, 이 두 부품의 전극부위에 Sn-10wt%Pb(이하 Sn-l0PB), Sn을 각각 도금하였다. 솔더링 후 1608C 와 1608R의 전단 접합 강도와 솔더링부에서 Zn상의 변화를 관찰하였다. 측정결과, Sn-8Zn-3Bi 솔더의 초기 전단 접합 강도는 기판의 표면처리에 상관없이 약 40N 이었다. 그러나 고온 고습 시험 1000 시간 후에는 기판의 표면처리에 상관없이 약 30N 까지 감소하였다. 하지만 이는 reference인 Sn-37Pb 솔더의 강도값과 거의 유사하며, 이는 Sn-8Bi-3Zn 솔더의 고온 고습 시험 후 전단강도 특성은 기존 유연솔더와 비교하여 동등이상이라고 평가할 수 있다.

  • PDF

Effect of Sn Decorated MWCNT Particle on Microstructures and Bonding Strengths of the OSP Surface Finished FR-4 Components Assembled with Sn58%Bi Composite Solder Joints (OSP 표면처리된 FR-4 PCB기판과 Sn58%Bi 복합솔더 접합부의 미세조직 및 접합강도에 미치는 Sn-MWCNT의 영향)

  • Park, Hyun-Joon;Lee, Choong-Jae;Min, Kyung Deuk;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.163-169
    • /
    • 2019
  • Sn-Pb solder alloys in electronics rapidly has been replaced to Pb free solder alloys because of various environmental regulations such as restriction of hazardous substances directive (RoHS), European Union waste electrical, waste electrical and electronic equipment (WEEE), registration evaluation authorization and of chemicals (REACH) etc. Because Sn58%Bi (in wt.%) solder alloy has low melting point and higher mechanical properties than that of Sn-Pb solder, it has been studied to manufacture electronic components. However, the reliability of Sn58%Bi solder could be lowered because of the brittleness of Bi element included in the solder alloy. Therefore, we observed the microstructures of Sn58%Bi composite solders with various contents of Sn-decorated multiwalled carbon nanotube (Sn-MWCNT) particles and evaluated bonding strength of the FR-4 components assembled with Sn58%Bi composite solder. Also, microstructures and bonding strengths of the Sn58%Bi composite solder joints were evaluated with the number of reflows from 1 to 7 times, respectively. Bonding strengths and fracture energies of the Sn58%Bi composite solder joints were measured by die shear test. Microstructures and fracture modes were observed with scanning electron microscope (SEM). Microstructures in the Sn58%Bi composite solder joints were finer than that of only Sn58%Bi solder joint. Bonding strength and fracture energy of Sn58%Bi composite solder including 0.1 wt.% of Sn-decorated MWCNT particles increased up to 20.4% and 15.4% at 5 times in reflow, respectively.

Development of 2-kW Class C Amplifier Using GaN High Electron Mobility Transistors for S-band Military Radars (S대역 군사 레이더용 2kW급 GaN HEMT 증폭기 개발)

  • Kim, Si-Ok;Choi, Gil-Wong;Yoo, Young-Geun;Lim, Byeong-Ok;Kim, Dong-Gil;Kim, Heung-Geun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.3
    • /
    • pp.421-432
    • /
    • 2020
  • This paper proposes a 2-kW solid-state power amplifier (SSPA) developed by employing power amplifier pallets designed using gallium-nitride high electron mobility transistors, which is used in S-band military radars and to replace existing traveling-wave tube amplifier (TWTA). The SSPA consists of a high-power amplifier module, which combines eight power amplifier pallets, a drive amplifier module, a digital control module, and a power supply unit. First, the amplifier module and component were integrated into a small package to account for space limitations; next, an on-board harmonic filter was fabricated to reject spurious components; and finally, an auto gain control system was designed for various duty ratios because recent military radar systems are all active phase radars using the pulse operation mode. The developed SSPA exhibited a max gain of 48 dB and an output power ranging between 63-63.6 dBm at a frequency band of 3.1 to 3.5 GHz. The auto gain control function showed that the output power is regulated around 63 dBm despite the fluctuation of the input power from 15-20 dBm. Finally, reliability of the developed system was verified through a temperature environment test for nine hours at high (55 ℃) / low (-40℃) temperature profile in accordance with military standard 810. The developed SSPA show better performance such as light weight, high output, high gain, various safety function, low repair cost and short repair time than existing TWTA.

Optimization of Soldering Process of Sn-3.0Ag-0.5Cu and Sn-1.0Ag-0.7Cu-1.6Bi-0.2In Alloys for Solar Combiner Junction Box Module (태양광 접속함 정션박스 모듈 적용을 위한 Sn-3.0Ag-0.5Cu 및 Sn-1.0Ag-0.7Cu-1.6Bi-0.2In 솔더링의 공정최적화)

  • Lee, Byung-Suk;Oh, Chul-Min;Kwak, Hyun;Kim, Tae-Woo;Yun, Heui-Bog;Yoon, Jeong-Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.3
    • /
    • pp.13-19
    • /
    • 2018
  • The soldering property of Pb-containing solder(Sn-Pb) and Pb-free solders(Sn-3.0Ag-0.5Cu and Sn-1.0Ag-0.7Cu-1.6Bi-0.2In) for solar combiner box module was compared. The solar combiner box module was composed of voltage and current detecting modules, diode modules, and other modules. In this study, solder paste printability, printing shape inspection, solder joint property, X-ray inspection, and shear force measurements were conducted. For optimization of Pb-free soldering process, step 1 and 2 were divided. In the step 1 process, the printability of Pb-containing and Pb-free solder alloys were estimated by using printing inspector. Then, the relationship between void percentages and shear force has been estimated. Overall, the property of Pb-containing solder was better than two Pb-free solders. In the step 2 process, the property of reflow soldering for the Pb-free solders was evaluated with different reflow peak temperatures. As the peak temperature of the reflow process gradually increased, the void percentage decreased by 2 to 4%, but the shear force did not significantly depend on the reflow peak temperature by a deviation of about 0.5 kgf. Among different surface finishes on PCB, ENIG surface finish was better than OSP and Pb-free solder surface finishes in terms of shear force. In the thermal shock reliability test of the solar combiner box module with a Pb-free solder and OSP surface finish, the change rate of electrical property of the module was almost unchanged within a 0.3% range and the module had a relatively good electrical property after 500 thermal shock cycles.