• Title/Summary/Keyword: PC slab

Search Result 91, Processing Time 0.029 seconds

Ductility Evaluation of Flat Plate Slab- Precast Concrete Shell Column Connection (플랫 플레이트 슬래브-중공 PC기둥 접합부의 연성평가)

  • Yang, Won-Jik;Park, Jin-Young;Yi, Waon-Ho;Ryu, Hong-Sik;Oh, Sang-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.75-76
    • /
    • 2009
  • Recently, Construction Business, is changing very quickly, exceedingly needs to slim down the expensive by material costs and term of works. Because of that reason, new technologies of construction studies are very popular. It is part of a Shell PC column. Therefore, intend of study was to investigate the response of column-slab connection of Shell PC column and flat plate slab that has been widely used in high rise buildings.

  • PDF

Shear Capacity of Precast Concrete Triple Ribs Slab (프리캐스트 콘크리트 트리플 리브 슬래브의 전단성능)

  • Hwang, Seung-Bum;Seo, Soo-Yeon;Lee, Kang-Cheol;Lee, Seok-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.4
    • /
    • pp.489-496
    • /
    • 2016
  • Recently, a concern about hollow core precast concrete (PC) slab has been increased as a method to improve the construction ability by reducing the self weight of structures during the construction. Hollow core slab which is known as a typical PC slab in domestic construction of PC building has a problem to put shear reinforcements in the web of element during the production of element in the factory. With regard to this point, recently, tripple ribs slab (TRS) which can be said as a new type of half PC slab system was developed. In TRS, it is possible to place shear reinforcements in PC element during the production of the element in the factory. This paper presents the shear test result of TRS which was done by one point loading test under simple support condition. Test parameters are the presence of cast-in-place (CIP) concrete and the contribution of lattice bars. From the test, it was found that the TRS has sufficient shear capacity to resist the design load and its strength can be predicted by the code equations for general beam. It is recommended to ignore the strength of lattice bar in the calculation of shear strength during the construction since its contribution is too low to be considered when CIP is not casted.

A Study on the Comparison of Performance of PC-Slab Composite Plate Girder from the Actual Sized Experiment (실물실험을 통한 PC-Slab합성 판형교의 성능비교연구)

  • Min, Kyung-Ju;Lee, Sung-Uk;Kim, Yung-Guk;Woo, Yong-Keun
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1300-1309
    • /
    • 2010
  • In the railway bridges, steel plate girder types are preferred due the high stability. Nevertheless, it has been pointed out that this type of bridge has problems such as, structural damages in the rail and girder seat, noise problem due to impact at the rail joint and excessive vibration. This vibration and/or deflection are mainly because insufficient stiffness of steel plate type of bridge. To resolve these problems, PC-Slab composite plate girder type which has simple process and economic cost, is proposed in this study. The static and dynamic experiment is performed by using the production of actual sized PC-Slab and abandoned steel plate girder. The object of this experiment is to verify the fact that girder stiffness increase and structural safety. The result of the experiment is used to analyze the effect of performance improvement of PC composite plate girder type. Using this method, economic rail maintainers, girder stiffness increase, and also speed/ride improvement even for existing rail could be expected by dynamic performance improvement. Additionally noise due to impact, deflection and vibration caused from long rails can be reduced.

  • PDF

Longitudinal anti-cracking analysis for post-tensioned voided slab bridges

  • Zhou, Zhen;Meng, Shao-Ping;Liu, Zhao
    • Structural Engineering and Mechanics
    • /
    • v.43 no.4
    • /
    • pp.459-473
    • /
    • 2012
  • Post-tensioned concrete voided slab girders are widely used in highway bridge constructions. To obtain greater section hollow rate and reduce the self-weight, the plate thickness of slab girders are designed to be small with the adoption of flat anchorage system. Since large prestress is applied to the anchor end section, it was found that longitudinal shear cracks are easy to occur along the voided slab girder. The reason is the existence of great shearing effect at the junction area between web and bottom (top) plate in the anchor end section. This paper focuses on the longitudinal anti-cracking problem at the anchor end of post-tensioned concrete voided slab girders. Two possible models for longitudinal anticracking analysis are proposed. Differential element analysis method is adopted to derive the solving formula of the critical cracking state, and then the practical analysis method for longitudinal anti-cracking is established. The influence of some factors on the longitudinal anti-cracking ability is studied. Results show that the section dimensions (thickness of bottom, web and top plate) and prestress eccentricity on web plate are the main factors that influence the anti-cracking ability. Moreover, the proposed method is applied into three engineering examples to make longitudinal anti-cracking verification for the girders. According to the verification results, the design improvements for these girders are determined.

A Evaluation on Flexural Behavior for Hollow Core Slab of Fire Resistance section for Residence Building (주거용 내화단면 중공슬래브의 휨거동 평가)

  • Boo, Yoon-Seob;Bae, Kyu-Woong;Shin, Sang-Min
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.2
    • /
    • pp.61-68
    • /
    • 2023
  • A two-hour fire-resistance PC hollow slab for residential use was developed to secure structural and fire-resistance performance and to be applied to the general building and apartment housing markets. Compared to the existing hollow slab, in order to secure the same or better structural performance and economic feasibility by reducing the quantity, it was attempted to secure the fire resistance performance by reducing the concrete filling rate in the cross section and adjusting the thickness of the upper and lower flanges by optimizing the hollow shape in the cross section of the slab. For structural performance evaluation, experiments were performed on PC hollow slabs by varying the member thickness and the presence or absence of overlaid concrete, and all of the experimental results showed that the design strength was sufficiently exhibited and that stability during construction was possible. The developed synthetic PC hollow slab has secured fire resistance and residential performance so that it can be applied to all buildings, and it is intended to be immediately applied to the field.

Flexural Capacity of Precast Concrete Triple Ribs Slab (프리캐스트 콘크리트 트리플 리브 슬래브의 휨성능)

  • Hwang, Seung-bum;Seo, Soo-yeon;Lee, Kang-cheol;Lee, Seok-hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.1
    • /
    • pp.3-11
    • /
    • 2016
  • The concern about hollow core PC slab has been increased to improve the workability during a construction of building by reducing self weight of structural members. In this manner, recently, TRS (Tripple Ribs Slab) was developed as a new type of half PC slab system. TRS member consists of the triple webs and the bottom flange prestressed by strands. The slab system is completed by casting of topping concrete on the TRS after filling styrofoam between the webs. This paper, presents a flexural experiment to investigate the flexural capacity of the TRS. Five full scale TRS members were made and tested under simple support condition to be failed by flexure and their strength was evaluated by code equations; the variables in the test are the depth and the presence of topping or raised spot formed when slip-forming. In addition, a nonlinear sectional analysis was performed for the specimens and the result was compared with the test results. From the study, it was found that the TRS has enough flexural strength and ductility to resist the design loads and its strength can be suitably predicted by using code equations. The raised spot did not affect the strength so that the spot need not to be removed by doing additional work. For the more accurate prediction of TRS's flexural behavior by using nonlinear sectional analysis, it is recommended to consider the concrete's brittle property due to slip-forming process in the modeling.

Development of Selection Criteria for Composite Method Using Half-PC Slab (하프슬래브를 이용한 PC 복합공법의 선정기준 개발)

  • Park, Byeong-Hun;Kim, Jae-Yeob
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.103-104
    • /
    • 2016
  • Most of studies on PC method aim at the structural analysis and development of PC members, and studies on the construction management aspect are insufficient. This study is a basic research in the construction management aspect regarding 'composite method using hollow-PC column' (HPC method), and is intended to develop assessment standards for the benefit·cost analysis of HPC method. Assessment standards for the benefit·cost analysis were composed of main-factors and sub-factors through interview with 4 experts. It was possible to classify main-factors into 4 major categories, i.e,. structural performance, construction performance, construction duration and construction cost. Sub-factors were composed of factors which were of high importance in assessing the two methods. And factors judged to be repeated or of little importance were excluded.

  • PDF

Experimental Study on Shear Capacity of I-slab System Using Slim Precast Slab Deck (슬림 프리캐스트 슬래브 데크를 사용한 I-슬래브 시스템의 전단 성능에 관한 실험적 연구)

  • Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.126-133
    • /
    • 2017
  • This paper presents the shear capacities of hollow slab with plate and octagonal pillar type hollow sphere. Recently, the interest in precast hollow slab system for buildings is growing up according to the demand for high quality control and the increase in slab thickness. A hollow slab system is widely known as one of the effective slab system which can reduce self-weight of slab. However, hollow slabs are vulnerable to the deterioration in the shear strength due to the decrease of concrete at slab web which resists shear. Especially, in case of precast hollow slabs, it has joint surface between precast concrete slab modules along transverse axis of slab, and shear failure, that is caused by cracks at joints, has to be prevented. Therefore, in this study, shear capacity of the I-slab system is evaluated by 3-points-supported shear test along the longitudinal and transverse axis of slab specimen. Test results showed that I-slab had enough shear strength compared to theoretical shear strength even if it included the joint surfaces.

Flexural Capacity of Encased Composite Beam with Hollow Core PC Slabs (매입형 합성보의 휨 성능 평가 -속 빈 프리캐스트 콘크리트 슬래브와 비대칭 H형강 철골보-)

  • Heo, Byung Wook;Bae, Kyu Woong;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.587-598
    • /
    • 2004
  • In this study, an experiment was conducted on the Slim Floor system, using a hollow core PC slab, which could reduce the over-all depth of a composite beam. The Slim Floor system is a method used in steel frame multi-story building construction, in which the structural depth of each floor is minimized after incorporating the steel floor beams within the depth of the concrete floor slab. This experimental study focused on the flexural behavior of the partially connected Slim Floor system with asymmetric steel beams encased in hollow core PC slabs. Ten full-scale specimens were constructed and tested in this study, with different steel beam heights, hollow core PC slabs, slab widths, and PC slab bearings. Observations made in line with the experiments indicated that the degree of shear connection without additional shear connection was 0.48-0.98 times more than that of the full shear connection, due to inherent mechanical and chemical bond stress.

Improved nonlinear modelling approach of simply supported PC slab under free blast load using RHT model

  • Rashad, Mohamed;Yang, T.Y.
    • Computers and Concrete
    • /
    • v.23 no.2
    • /
    • pp.121-131
    • /
    • 2019
  • Due to the heterogeneity nature of the concrete, it is difficult to simulate the hyperdynamic behaviour and crack trajectory of concrete material when subjected to explosion loads. In this paper, a 3D nonlinear numerical study was conducted to simulate the hyperdynamic behaviour of concrete under various loading conditions using Riedel-Hiermaier-Thoma (RHT) model. Detailed calibration was conducted to identify the optimal parameters for the RHT model on the material level. For the component level, the calibrated RHT parameters were used to simulate the failure behaviour of plain concrete (PC) slab under free air blast load. The response was compared with an available experimental result. The results show the proposed numerical model can accurately simulate the crack trajectory and the failure mode of the PC slab under free air blast load.