Browse > Article
http://dx.doi.org/10.12989/cac.2019.23.2.121

Improved nonlinear modelling approach of simply supported PC slab under free blast load using RHT model  

Rashad, Mohamed (Department of Civil Engineering, University of British Columbia)
Yang, T.Y. (Department of Civil Engineering, University of British Columbia)
Publication Information
Computers and Concrete / v.23, no.2, 2019 , pp. 121-131 More about this Journal
Abstract
Due to the heterogeneity nature of the concrete, it is difficult to simulate the hyperdynamic behaviour and crack trajectory of concrete material when subjected to explosion loads. In this paper, a 3D nonlinear numerical study was conducted to simulate the hyperdynamic behaviour of concrete under various loading conditions using Riedel-Hiermaier-Thoma (RHT) model. Detailed calibration was conducted to identify the optimal parameters for the RHT model on the material level. For the component level, the calibrated RHT parameters were used to simulate the failure behaviour of plain concrete (PC) slab under free air blast load. The response was compared with an available experimental result. The results show the proposed numerical model can accurately simulate the crack trajectory and the failure mode of the PC slab under free air blast load.
Keywords
3D nonlinear finite element analysis; RHT model; plain concrete; free air blast load; mesh sensitivity;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 ANSYS-AUTODYN (2009), "Interactive non-linear dynamic analysis software", Version 16, User's Manual, Century Dynamics Inc.
2 ANSYS (2007), Theory Reference Manual, Release 11.0, ANSYS Inc.
3 Benson, D.J. (1992), "Computational methods in Lagrangian and Eulerian hydrocode", Comput. Meth. Appl. Mech. Eng., 99, 2356-2394.   DOI
4 Chen, W.F. (1982), Plasticity in Reinforced Concrete, McGraw-Hill, New York, NY, USA.
5 Codina, R., Ambrosini, D. and de Borbon, F. (2016), "Experimental and numerical study of a RC member under a close-in blast loading", Eng. Struct., 127, 145-158.   DOI
6 CONWEP (1990), Conventional Weapons Effects, Computer Software Produced by the U.S. Army Waterways, Experimental Station, Mississippi, USA.
7 Gebbeken, N. and Ruppert, M. (2000), "A new material model for concrete in high-dynamic hydrocode simulations", Arch. Appl. Mech., 70, 463-478.   DOI
8 Govindjee, S., Gregory, J.K. and Simo, J.C. (1995), "Anisotropic modeling and numerical-simulation of brittle damage in concrete", Int. J. Numer. Meth. Eng., 38, 3611-3633.   DOI
9 Hentz, S., Donze, F.V. and Daudeville, L. (2004), "Discrete element modelling of concrete submitted to dynamic loading at high strain rates", Comput. Struct., 82, 2509-2524.   DOI
10 Herrmann, W. (1969), "Constitutive equation for the dynamic compaction of ductile porous materials", J. Appl. Phys., 40, 2490-2499.   DOI
11 Hu, G., Wu, J. and Li, L. (2016), "Advanced concrete model in hydrocode to simulate concrete structures under blast loading", Adv. Civil Eng., 2016, 1-13.
12 Nystrom, U. and Gylltoft, K. (2011), "Comparative numerical studies of projectile impacts on plain and steel-fibre reinforced concrete", Int. J. Impact Eng., 38(2), 95-105.   DOI
13 Li, X., Miao, C., Wang, Q. and Geng, Z. (2016), "Antiknock performance of interlayered high-damping-rubber blast door under thermobaric shock wave", Shock Vib., 2016, Article ID 2420893, 9.
14 Lu, X. and Hsu, C.T.T. (2007), "Stress-strain relations of highstrength concrete under triaxial compression", J. Mater. Civil Eng., 19(3), 261-8.   DOI
15 Luccioni, B., Araoz, G. and Labanda, N. (2013), "Defining Erosion Limit for Concrete", Int. J. Protect. Struct., 4(3), 315-340.   DOI
16 Malvar, L.J., Crawford, J.E., Wesevich, J.W. and Simons, D. (1997), "A plasticity concrete material model for DYNA3D", Int. J. Impact Eng., 19, 847-873.   DOI
17 Nystrom, U. and Gylltoft, K. (2009), "Numerical studies of the combined effects of blast and fragment loading", Int. J. Impact Eng., 36(8), 995-1005.   DOI
18 Rashad, M. and Yang, T.Y. (2018), "Numerical study of steel sandwich plates with RPF and VR cores materials under free air blast loads", Steel Compos. Struct., 27(6), 717-725.   DOI
19 Rashad, M., Wahab, M.M.A. and Yang, T.Y. (2019), "Experimental and numerical investigation of RC sandwich panels with helical springs under free air blast loads", Steel Compos. Struct., 30(3), 217-230.   DOI
20 Riedel, W. (2000), "Beton unter dynamischen Lasten Meso- und makromechanische Modelle und ihre Parameter", Doctoral Thesis, Institut Kurzzeitdynamik, Ernst-Mach-Institut der Bundeswehr Munchen, Freiburg. (in German)
21 Tu, Z. and Lu, Y. (2010), "Modifications of RHT material model for improved numerical simulation of dynamic response of concrete", Int. J. Impact Eng., 37(10), 1072-1082.   DOI
22 Riedel, W. (2009), "10 years RHT: A review of concrete modelling and hydrocode applications", Predictive Modeling of Dynamic Processes, Springer, Boston.
23 Riedel, W., Thoma, K. and Hiermaier, S. (1999), "Penetration of reinforced concrete by BETA-B-500 numerical analysis using a new macroscopic concrete model for hydrocodes", Proceedings of the 9th International Symposium Interact, Eff. Munitions with Struct., Berlin-Strausberg, May.
24 Riedel, W., Wicklein, M. and Thoma, K. (2008), "Shock properties of conventional and high strength concrete: Experimental and mesomechanical analysis", Int. J. Impact Eng., 35, 155-171.   DOI
25 TM5-1300 (1990), Structures to Resist the Effects of Accidental Explosions, Technical Manual, US Department of the Army, Washington DC, USA.
26 Tu, Z. and Lu, Y. (2009), "Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations", Int. J. Impact Eng., 36(1), 132-146.   DOI
27 Wang, G. and Zhang, S. (2014), "Damage prediction of concrete gravity dams subjected to underwater explosion shock loading", Eng. Fail. Anal., 39, 72-91.   DOI
28 Wang, W., Zhang, D., Lu, F., Wang, S.C. and Tang, F. (2013), "Experimental study and numerical simulation of the damage mode of a square reinforced concrete slab under close-in explosion", Eng. Fail. Anal., 27, 41-51.   DOI
29 Zhang, M.H., Sharif, S.H. and Lu, G. (2007), "Impact resistance of high-strength fibre-reinforced concrete", Mag. Concrete Res., 59(3), 199-210.   DOI
30 Xu, K. and Lu, Y. (2006), "Numerical simulation study of spallation in reinforced concrete plates subjected to blast loading", Comput. Struct., 84(5-6), 431-438.   DOI
31 Zhou, X.Q. and Hao, H. (2008), "Numerical prediction of reinforced concrete exterior wall response to blast loading", Adv. Struct. Eng., 11(4), 355-367.   DOI