DOI QR코드

DOI QR Code

Improved nonlinear modelling approach of simply supported PC slab under free blast load using RHT model

  • Rashad, Mohamed (Department of Civil Engineering, University of British Columbia) ;
  • Yang, T.Y. (Department of Civil Engineering, University of British Columbia)
  • Received : 2018.04.21
  • Accepted : 2019.02.06
  • Published : 2019.03.25

Abstract

Due to the heterogeneity nature of the concrete, it is difficult to simulate the hyperdynamic behaviour and crack trajectory of concrete material when subjected to explosion loads. In this paper, a 3D nonlinear numerical study was conducted to simulate the hyperdynamic behaviour of concrete under various loading conditions using Riedel-Hiermaier-Thoma (RHT) model. Detailed calibration was conducted to identify the optimal parameters for the RHT model on the material level. For the component level, the calibrated RHT parameters were used to simulate the failure behaviour of plain concrete (PC) slab under free air blast load. The response was compared with an available experimental result. The results show the proposed numerical model can accurately simulate the crack trajectory and the failure mode of the PC slab under free air blast load.

Keywords

Acknowledgement

Supported by : National Science Foundation China

References

  1. ANSYS-AUTODYN (2009), "Interactive non-linear dynamic analysis software", Version 16, User's Manual, Century Dynamics Inc.
  2. ANSYS (2007), Theory Reference Manual, Release 11.0, ANSYS Inc.
  3. Benson, D.J. (1992), "Computational methods in Lagrangian and Eulerian hydrocode", Comput. Meth. Appl. Mech. Eng., 99, 2356-2394. https://doi.org/10.1016/0045-7825(92)90042-I
  4. Chen, W.F. (1982), Plasticity in Reinforced Concrete, McGraw-Hill, New York, NY, USA.
  5. Codina, R., Ambrosini, D. and de Borbon, F. (2016), "Experimental and numerical study of a RC member under a close-in blast loading", Eng. Struct., 127, 145-158. https://doi.org/10.1016/j.engstruct.2016.08.035
  6. CONWEP (1990), Conventional Weapons Effects, Computer Software Produced by the U.S. Army Waterways, Experimental Station, Mississippi, USA.
  7. Gebbeken, N. and Ruppert, M. (2000), "A new material model for concrete in high-dynamic hydrocode simulations", Arch. Appl. Mech., 70, 463-478. https://doi.org/10.1007/s004190000079
  8. Govindjee, S., Gregory, J.K. and Simo, J.C. (1995), "Anisotropic modeling and numerical-simulation of brittle damage in concrete", Int. J. Numer. Meth. Eng., 38, 3611-3633. https://doi.org/10.1002/nme.1620382105
  9. Hentz, S., Donze, F.V. and Daudeville, L. (2004), "Discrete element modelling of concrete submitted to dynamic loading at high strain rates", Comput. Struct., 82, 2509-2524. https://doi.org/10.1016/j.compstruc.2004.05.016
  10. Herrmann, W. (1969), "Constitutive equation for the dynamic compaction of ductile porous materials", J. Appl. Phys., 40, 2490-2499. https://doi.org/10.1063/1.1658021
  11. Hu, G., Wu, J. and Li, L. (2016), "Advanced concrete model in hydrocode to simulate concrete structures under blast loading", Adv. Civil Eng., 2016, 1-13.
  12. Li, X., Miao, C., Wang, Q. and Geng, Z. (2016), "Antiknock performance of interlayered high-damping-rubber blast door under thermobaric shock wave", Shock Vib., 2016, Article ID 2420893, 9.
  13. Lu, X. and Hsu, C.T.T. (2007), "Stress-strain relations of highstrength concrete under triaxial compression", J. Mater. Civil Eng., 19(3), 261-8. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:3(261)
  14. Luccioni, B., Araoz, G. and Labanda, N. (2013), "Defining Erosion Limit for Concrete", Int. J. Protect. Struct., 4(3), 315-340. https://doi.org/10.1260/2041-4196.4.3.315
  15. Malvar, L.J., Crawford, J.E., Wesevich, J.W. and Simons, D. (1997), "A plasticity concrete material model for DYNA3D", Int. J. Impact Eng., 19, 847-873. https://doi.org/10.1016/S0734-743X(97)00023-7
  16. Nystrom, U. and Gylltoft, K. (2009), "Numerical studies of the combined effects of blast and fragment loading", Int. J. Impact Eng., 36(8), 995-1005. https://doi.org/10.1016/j.ijimpeng.2009.02.008
  17. Nystrom, U. and Gylltoft, K. (2011), "Comparative numerical studies of projectile impacts on plain and steel-fibre reinforced concrete", Int. J. Impact Eng., 38(2), 95-105. https://doi.org/10.1016/j.ijimpeng.2010.10.003
  18. Rashad, M. and Yang, T.Y. (2018), "Numerical study of steel sandwich plates with RPF and VR cores materials under free air blast loads", Steel Compos. Struct., 27(6), 717-725. https://doi.org/10.12989/SCS.2018.27.6.717
  19. Rashad, M., Wahab, M.M.A. and Yang, T.Y. (2019), "Experimental and numerical investigation of RC sandwich panels with helical springs under free air blast loads", Steel Compos. Struct., 30(3), 217-230. https://doi.org/10.12989/SCS.2019.30.3.217
  20. Riedel, W. (2000), "Beton unter dynamischen Lasten Meso- und makromechanische Modelle und ihre Parameter", Doctoral Thesis, Institut Kurzzeitdynamik, Ernst-Mach-Institut der Bundeswehr Munchen, Freiburg. (in German)
  21. Riedel, W. (2009), "10 years RHT: A review of concrete modelling and hydrocode applications", Predictive Modeling of Dynamic Processes, Springer, Boston.
  22. Riedel, W., Thoma, K. and Hiermaier, S. (1999), "Penetration of reinforced concrete by BETA-B-500 numerical analysis using a new macroscopic concrete model for hydrocodes", Proceedings of the 9th International Symposium Interact, Eff. Munitions with Struct., Berlin-Strausberg, May.
  23. Riedel, W., Wicklein, M. and Thoma, K. (2008), "Shock properties of conventional and high strength concrete: Experimental and mesomechanical analysis", Int. J. Impact Eng., 35, 155-171. https://doi.org/10.1016/j.ijimpeng.2007.02.001
  24. TM5-1300 (1990), Structures to Resist the Effects of Accidental Explosions, Technical Manual, US Department of the Army, Washington DC, USA.
  25. Tu, Z. and Lu, Y. (2009), "Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations", Int. J. Impact Eng., 36(1), 132-146. https://doi.org/10.1016/j.ijimpeng.2007.12.010
  26. Tu, Z. and Lu, Y. (2010), "Modifications of RHT material model for improved numerical simulation of dynamic response of concrete", Int. J. Impact Eng., 37(10), 1072-1082. https://doi.org/10.1016/j.ijimpeng.2010.04.004
  27. Wang, G. and Zhang, S. (2014), "Damage prediction of concrete gravity dams subjected to underwater explosion shock loading", Eng. Fail. Anal., 39, 72-91. https://doi.org/10.1016/j.engfailanal.2014.01.018
  28. Wang, W., Zhang, D., Lu, F., Wang, S.C. and Tang, F. (2013), "Experimental study and numerical simulation of the damage mode of a square reinforced concrete slab under close-in explosion", Eng. Fail. Anal., 27, 41-51. https://doi.org/10.1016/j.engfailanal.2012.07.010
  29. Xu, K. and Lu, Y. (2006), "Numerical simulation study of spallation in reinforced concrete plates subjected to blast loading", Comput. Struct., 84(5-6), 431-438. https://doi.org/10.1016/j.compstruc.2005.09.029
  30. Zhang, M.H., Sharif, S.H. and Lu, G. (2007), "Impact resistance of high-strength fibre-reinforced concrete", Mag. Concrete Res., 59(3), 199-210. https://doi.org/10.1680/macr.2007.59.3.199
  31. Zhou, X.Q. and Hao, H. (2008), "Numerical prediction of reinforced concrete exterior wall response to blast loading", Adv. Struct. Eng., 11(4), 355-367. https://doi.org/10.1260/136943308785836826

Cited by

  1. Prediction of concrete spall damage under blast: Neural approach with synthetic data vol.26, pp.6, 2019, https://doi.org/10.12989/cac.2020.26.6.533