• Title/Summary/Keyword: P-type ZnO thin films

Search Result 84, Processing Time 0.032 seconds

Alanysis of the Optical Properties of p-type ZnO Thin Films Doped by P based on Ampouele-tube Method (Ampoule-tube 법으로 Phosphorus를 도핑한 P형 ZnO 박막의 광학적 특성 분석)

  • Yoo, In-Sung;Oh, Sang-Hyun;So, Soon-Jin;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.145-146
    • /
    • 2006
  • The most Important research topic in the development of ZnO LED and LD is the production of p-type ZnO thin film that has minimal stress with outstanding stoichiometric ratio. In this study, Phosphorus diffused into the undoped ZnO thin films using the ampoule-tube method for the production of p-type znO thin films. The undoped ZnO thin films were deposited by RF magnetron sputtering system on $GaAs_{0.6}P_{0.4}$/GaP and Si wafers. 4N Phosphorus (P) was diffused into the undoped ZnO thin films in ampoule-tube which was performed and $630^{\circ}C$ during 3hr. We found the diffusion condition of the conductive ZnO films which had p-type properties with the highest mobility of above 532 $cm^2$/Vs compared with other studies PL spectra measured at 10K for the purpose of analyzing optical properties of p-type ZnO thin film showed strong PL intensity in the UV emission band around 365nm ~ 415nm and 365nm ~ 385nm.

  • PDF

Electrical and Optical Properties of p-type ZnO:P Fabricated by Ampoule-tube Vapor-state Diffusion

  • So, Soon-Jin;Oh, Sang-Hyun;Park, Choon-Bae
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.1
    • /
    • pp.24-27
    • /
    • 2008
  • ZnO has intensively attracted interest for the next generation of short wavelength LEDs and semiconductor lasers. However, for the development and application of the devices based on this material, the fabrication of p-type ZnO thin films is pivotal. Generally, the process of preparation of ZnO is unavoidably accompanied by the natural donor ions such as interstitial Zn ions and oxygen vacancy ions that show n-type electrical property and make fabrication of p-type ZnO to be a hard problem. On this study, to realize stable high-quality p-type ZnO thin films, the undoped ZnO thin films were diffused with P in vapor state. The ZnO:P thin films showed high-quality p-type properties electrically and optically.

Analysis of Photoluminescence for N-doped and undoped p-type ZnO Thin Films Fabricated by RF Magnetron Sputtering Method

  • Liu, Yan-Yan;Jin, Hu-Jie;Park, Choon-Bae;Hoang, Geun C.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.1
    • /
    • pp.24-27
    • /
    • 2009
  • N-doped ZnO thin films were deposited on n-type Si(100) and homo-buffer layer, and undoped ZnO thin film was also deposited on homo-buffer layer by RF magnetron sputtering method. After deposition, all films were in-situ annealed at $800^{\circ}C$ for 5 minutes in ambient of $O_2$ with pressure of 10Torr. X -ray diffraction shows that the homo-buffer layer is beneficial to the crystalline of N-doped ZnO thin films and all films have preferable c-axis orientation. Atomic force microscopy shows that undoped ZnO thin film grown on homo-buffer layer has an evident improvement of smoothness compared with N-dope ZnO thin films. Hall-effect measurements show that all ZnO films annealed at $800^{\circ}C$ possess p-type conductivities. The undoped ZnO film has the highest carrier concentration of $1.145{\times}10^{17}cm{-3}$. The photoluminescence spectra show the emissions related to FE, DAP and many defects such as $V_{Zn}$, $Zn_O$, $O_i$ and $O_{Zn}$. The p-type defects ($O_i$, $V_{Zn}$, and $O_{Zn}$) are dominant. The undoped ZnO thin film has a better p-type conductivity compared with N-doped ZnO thin film.

Synthesis of p-Type ZnO Thin Film Prepared by As Diffusion Method and Fabrication of ZnO p-n Homojunction

  • Kim, Deok Kyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.6
    • /
    • pp.372-375
    • /
    • 2017
  • ZnO thin films were deposited by RF magnetron sputtering and then diffused by using an As source in the ampouletube. Also, the ZnO p-n homojunction was made by using As-doped ZnO thin films, and its properties were analyzed. After the As doping, the surface roughness increased, the crystal quality deteriorated, and the full width at half maximum was increased. The As-doped ZnO thin films showed typical p-type properties, and their resistivity was as low as $2.19{\times}10^{-3}{\Omega}cm$, probably because of the in-diffusion from an external As source and out-diffusion from the GaAs substrate. Also, the ZnO p-n junction displayed the typical rectification properties of a p-n junction. Therefore, the As diffusion method is effective for obtaining ZnO films with p-type properties.

Phosphorus and Arsenic Diffusion used by Ampoule-tube Method into Undoped ZnO Thin Films and the Electrical Properties of p-type ZnO Thin Films (Undoped ZnO 박막에 Ampoule-tube 방법을 이용한 P와 As의 확산과 p형 ZnO 박막의 전기적 특성)

  • So, Soon-Jin;Wang, Min-Sung;Park, Choon-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.11
    • /
    • pp.1043-1047
    • /
    • 2005
  • To investigate the electrical properties of the ZnO films which are interested in the next generation of short wavelength LEDs and Lasers, our ZnO thin films were deposited by RF sputtering system. At sputtering process of ZnO thin films, substrate temperature, work pressure respectively is $300^{\circ}C$ and 5.2 mTorr, and the purity of target is ZnO 5N. The thickness of ZnO thin films was about $2.1\;{\mu}m$ at SEM analysis after sputtering process. Phosphorus (P) and arsenic (As) were diffused into the undoped ZnO thin films sputtered by RF magnetron sputtering system in ampoule tube which was below $5\times10^{-7}$ Torr. The dopant sources of phosphorus and arsenic were $Zn_3P_2$ and $ZnAs_2$. Those diffusion was perform at 500, 600, and $700^{\circ}C$ during 3 hr. We found the diffusion condition of the conductive ZnO films which had n- and p-type properties. Our ZnO thin film has not only very high carrier concentration of above $10^{17}/cm^3$ but also low resistivity of below $2.0\times10^{-2}\;{\Omega}cm$.

Realization of p-type ZnO Thin Films Using Codoping N and Al by RF Magnetron Sputtering

  • Jin, Hu-Jie;So, Byung-Moon;Park, Bok-Kee;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.107-108
    • /
    • 2006
  • ZnO is a promising material for UV or blue LEDs p-Type ZnO thin films which are imperative for the p-n junction of LEDs are difficult to achieve because of strong compensation of intrinsic defects such as zinc interstitial and oxygen vacancy. The method of codoping group three elements and group five elements is effective for the realization of p-type ZnO films. In this study, We codoped N and Al m ZnO thin films by RF magnetron sputtering and annealed the films in sputtering chamber. Some films showed p-type conductivity m Seeback effect measurement.

  • PDF

Optical properties of Phosphorus- and Arsenic-doped p-type ZnO Thin Films with Ampoule-tube Method (Ampoule-tube 법을 이용한 P와 As 도핑 p형 ZnO 박막의 광학적 특성)

  • So, Soon-Jin;Lee, Eun-Cheal;Yoo, In-Sung;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.97-98
    • /
    • 2005
  • To investigate the ZnO thin films which is interested in the next generation of short wavelength LEDs and Lasers, our ZnO thin films were deposited by RF sputtering system. Phosphorus (P) and arsenic (As) were diffused into about 2.1${\mu}m$ ZnO thin films sputtered by RF magnetron sputtering system mn ampoule tube which was below $5\times10^{-7}$ Torr. The dopant sources of phosphorus and arsenic were $Zn_3P_2$ and $ZnAs_2$. Those diffusion was perform at 500, 600, and 700$^{\circ}C$ during 3hr. We find the condition of p-type ZnO whose diffusion condition is 700$^{\circ}C$, 3hr Our p-type ZnO thin film has not only very high carrier concentration of above $10^{19}/cm^3$ but also low resistivity of $5\times10^{-3}{\Omega}cm$.

  • PDF

Microstructures and Hall Properties of p-type Zno Thin Films with Ampouele-tube Method of P and As (Ampoule-tube 법을 이용한 P와 As 도핑 p형 ZnO 박막의 미세구조와 Hall 특성)

  • So, Soon-Jin;Lim, Keun-Young;Yoo, In-Sung;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.141-142
    • /
    • 2005
  • To investigate the ZnO thin films which is interested in the next generation of short wavelength LEDs and Lasers, our ZnO thin films were deposited by RF sputtering system. At sputtering process of ZnO thin films, substrate temperature, work pressure respectively is $300^{\circ}C$ and 5.2 mTorr, and the purity of target is ZnO 5N. The thickness of ZnO thin films was about $1.9{\mu}m$ at SEM analysis after sputtering process. Phosphorus (P) and arsenic (As) were diffused into ZnO thin films sputtered by RF magnetron sputtering system in ampoule tube which was below $5\times10^{-7}$ Torr. The dopant sources of phosphorus and arsenic were $Zn_3P_2$ and $ZnAs_2$. Those diffusion was perform at 500, 600, and $700^{\circ}C$ during 3hr. We find the condition of p-type ZnO whose diffusion condition is $700^{\circ}C$, 3hr. Our p-type ZnO thin film has not only very high carrier concentration of above $10^{19}/cm^3$ but also low resistivity of $5\times10^{-3}{\Omega}cm$.

  • PDF

The Microstructures and Electrical Properties of ZnO/Sapphire Thin Films Doped by P and As based on Ampouele-tube Method (Ampoule-tube 법으로 P와 As을 도핑한 ZnO/Sapphire 박막의 미세구조와 전기적 특성)

  • Yoo, In-Sung;Jin, Eun-Mi;So, Byung-Moon;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.120-121
    • /
    • 2006
  • To investigate the ZnO thin films which are interested in the next generation of short wavelength LEDs and Lasers, the ZnO thin films were deposited by RF magnetron sputtering system. Al sputtering process of ZnO thin films substrate temperature, work pressure respectively is $100^{\circ}C$ and 15 mTorr, and the purity of target is ZnO 5N. The ZnO thin films were in-situ annealed at $600^{\circ}C$, $800^{\circ}C$ in $O_2$ atmosphere. Phosphorus (P) and arsenic (As) were diffused into ZnO thin films sputtered by RF magnetron sputtering system in ampoule tube which was below $5{\times}10^{-7}$ Torr. The dopant sources of phosphorus and arsenic were $Zn_3P_2$ and $ZnAS_2$. Those diffusion was perform at $650^{\circ}C$ during 3hr. We confirmed that p-type properties of ZnO thin films were concerned with dopant sources rather than diffusion temperature.

  • PDF

Characteristics of As-doped ZnO thin films with various buffer layer temperatures prepared by PLD method (PLD법을 이용한 Buffer Layer 증착온도에 따른 As-doped ZnO 박막의 특성)

  • Lee, Hong-Chan;Shim, Kwang-Bo;Oh, Young-Jei
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.84-89
    • /
    • 2006
  • Highly concentrated p-type ZnO thin films can be obtained by doping of N, P and As elements. In this study, undoped ZnO buffer layers were prepared on a (0001) sapphire substrate by a ultra high vaccum pulsed laser deposition(UHV-PLD) method. ZnO buffer layers were deposited with various deposition temperature($400{\sim}700^{\circ}C$) at 350 mtorr of oxygen working pressure. Arsenic doped(1 wt%) ZnO thin films were deposited on the ZnO buffer layers by UHV-PLD. Crystallinity of the samples were evaluated by X-ray diffractometer and scanning electron microscopy. Optical, electrical properties of the ZnO thin films were estimated by photoluminescence(PL) and Hall measurements. The optimal condition of the undoped ZnO buffer layer for the deposition of As-doped ZnO thin films was at $600^{\circ}C$ of deposition temperature.