• Title/Summary/Keyword: P'-spaces

Search Result 607, Processing Time 0.027 seconds

EXISTENCE OF THE SOLUTION OF COUNTABLY INFINITE SYSTEM OF DIFFERENTIAL EQUATIONS IN SEQUENCE SPACES mp(𝜙) AND np(𝜙) WITH THE HELP OF MEASURE OF NON-COMPACTNESS

  • KHAN, MOHD SHOAIB;UDDIN, IZHAR;LOHANI, Q.M. DANISH
    • Journal of applied mathematics & informatics
    • /
    • v.37 no.5_6
    • /
    • pp.329-339
    • /
    • 2019
  • The Banach spaces $m^p(\phi)$ and $n^p(\phi)$ are very important sequence spaces related to $l_p$, which were defined to fill the gaps between $l_p(1{\leq}p{\leq}{\infty})$. In this paper, we investigated the solubility of the infinite system of differential equations in $m^p(\phi)$ and $n^p(\phi)$ by proving related theorems. Moreover, one example has been included for the justification of the claim of this paper.

ON REGULAR PREOPEN SETS AND $p^{\ast}-CLOSED$ SPACES

  • CHO SEONG HOON;PARK JAE KEUN
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.525-537
    • /
    • 2005
  • We introduce the notions of regular preopen sets and $p^{\ast}-closed$ spaces and investigate some of these properties. Also we give a characterization of p-closed spaces.

A SYSTEM OF PARAMETRIC GENERALIZED NONLINEAR MIXED QUASI-VARIATIONAL INCLUSIONS IN $L_p$ SPACES

  • Jeong, Jae-Ug
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.493-506
    • /
    • 2005
  • In this paper, we study the behavior and sensitivity analysis of the solution set for a system of parametric generalized nonlinear mixed quasi-variational inclusions in Banach spaces. By using some new and innovative technique, existence theorem for the system of parametric generalized nonlinear mixed quasi-variational inclusions in $L_p(p\ge2$ spaces is established. Our results improve the known result of Agarwal et al.[1].

Some Difference Paranormed Sequence Spaces over n-normed Spaces Defined by a Musielak-Orlicz Function

  • Raj, Kuldip;Sharma, Sunil K.;Gupta, Amit
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.1
    • /
    • pp.73-86
    • /
    • 2014
  • In the present paper we introduce difference paranormed sequence spaces $c_0(\mathcal{M},{\Delta}^n_m,p,u,{\parallel}{\cdot},{\cdots},{\cdot}{\parallel})$, $c(\mathcal{M},{\Delta}^n_m,p,u,{\parallel}{\cdot},{\cdots},{\cdot}{\parallel})$ and $l_{\infty}(\mathcal{M},{\Delta}^n_m,p,u,{\parallel}{\cdot},{\cdots},{\cdot}{\parallel})$ defined by a Musielak-Orlicz function $\mathcal{M}$ = $(M_k)$ over n-normed spaces. We also study some topological properties and some inclusion relations between these spaces.

MINIMAL P-SPACES

  • Arya, S.P.;Bhamini, M.P.
    • Kyungpook Mathematical Journal
    • /
    • v.27 no.1
    • /
    • pp.27-33
    • /
    • 1987
  • Minimal s-Urysohn and minimal s-regular spaces are studied. An s-Urysohn (respectively, s-regular) space (X, $\mathfrak{T}$) is said to be minimal s-Urysohn (respectively, minimal s-regular) if for no topology $\mathfrak{T}^{\prime}$ on X which is strictly weaker than $\mathfrak{T}$, (X, $\mathfrak{T}^{\prime}$) is s-Urysohn (respectively s-regular). Several characterizations and other related properties of these classes of spaces have been obtained. The present paper is a study of minimal P-spaces where P refers to the property of being an s-Urysohn space or an s-regular space. A P-space (X, $\mathfrak{T}$) is said to be minimal P if for no topology $\mathfrak{T}^{\prime}$ on X such that $\mathfrak{T}^{\prime}$ is strictly weaker than $\mathfrak{T}$, (X, $\mathfrak{T}^{\prime}$) has the property P. A space X is said to be s-Urysohn [2] if for any two distinct points x and y of X there exist semi-open set U and V containing x and y respectively such that $clU{\bigcap}clV={\phi}$, where clU denotes the closure of U. A space X is said to be s-regular [6] if for any point x and a closed set F not containing x there exist disjoint semi-open sets U and V such that $x{\in}U$ and $F{\subseteq}V$. Throughout the paper the spaces are assumed to be Hausdorff.

  • PDF