• Title/Summary/Keyword: Oyster flavor

Search Result 52, Processing Time 0.022 seconds

Analysis of Volatile Flavor Compounds in Raw Oyster and Oyster Cooking Drips by Gamma Irradiation Using Headspace Method (Headspace 법을 이용한 생굴 및 굴 자숙액의 감마선 조사에 의한 휘발성 냄새 성분 변화 분석)

  • Choi, Jong-Il;Kim, Hyun-Joo;Lee, Ju-Woon
    • KSBB Journal
    • /
    • v.26 no.2
    • /
    • pp.177-181
    • /
    • 2011
  • This study was conducted to investigate the effects of gamma irradiation on the change of volatile flavor compounds of raw oyster and its cooking drips using headspace methods. Major volatile flavor compounds of the raw oyster were identified as methylthiomethane and 1,5-hexadiene. When the raw oyster was irradiated at the dose of 5 kGy, 1-pentane was newly detected. On the other hand, 9 compounds including N-methoxyformaldehyde were identified as the major volatile compounds of cooking drips from oyster. Among them, N-methoxyformaldehyde contents in cooking drip was decreased by the gamma irradiation. By the gamma irradiation above 30 kGy, new heterocyclic compounds was found in oyster cooking drips. Therefore, the amount of volatile flavor compounds in the raw oyster and cooking drips were changed by gamma irradiation, and these results could be potentially used in the seasoning industry.

The Precursors and Flavor Constituents of the Cooked Oyster Flavor (굴 자숙향의 발현성분)

  • Kang, Jin-Yeong;Roh, Tae-Hyun;Hwang, Seok-Min;Kim, Yeong-A;Choi, Jong-Duck;Oh, Kwang-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.6
    • /
    • pp.606-613
    • /
    • 2010
  • In order to elucidate a mechanism responsible for the development of the odor characteristics of cooked, desirable-flavored shellfish, oysters were extracted using various solvents and the resulting extracts were evaluated organoleptically after cooking. The 80% aqueous methanol extract was found to produce a desirable cooked flavor. This oyster extract was fractionated using ion-exchange column chromatography and dialysis, and each of the fractions was subjected to cooking, followed by organoleptic evaluation. The outer dialysate fraction such as acidic and amphoteric water-soluble fractions produced a cooked oyster flavor. The volatile flavor compounds identified from cooked oyster included 29 hydrocarbons, 20 alcohols, 16 acids, 12 aldehydes, nine nitrogen-containing aromatic compounds, eight ketones, five furans, three esters, three phenols, and one benzene.

Change in Flavor Patterns of Gamma Irradiated Raw Oyster and Oyster Cooking Drip Determined using an Electric Nose (전자코에 의한 감마선조사 생굴과 굴자숙액의 향기패턴 변화)

  • Han, In-Jun;Park, Jae-Seok;Choi, Jong-Il;Kim, Jae-Hun;Song, Beom-Seok;Yoon, Yo-Han;Byun, Myung-Woo;Chun, Soon-Sil;Lee, Ju-Woon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.42 no.3
    • /
    • pp.209-214
    • /
    • 2009
  • This study was conducted to evaluate changes in the flavor patterns of gamma irradiated raw oyster and oyster cooking drip using an electronic nose, which consisted of a GC equipped with a surface acoustic wave sensor. The raw oyster was irradiated with 1, 2, 3, 4 and 5 kGy, while the oyster cooking drip was irradiated with 10 and 50 kGy. In the case of raw oyster, the intensities of peaks at retention times (RT) of 2.1 sand 6.8 s were increased, but the peak at a RT of 9.0 s was decreased depending on irradiation dose. In the case of oyster cooking drip, the intensities of peaks at RT 2.5 sand RT 4.1 s increased linearly, but at the peak at RT 5.1 s decreased as the irradiation dose increased. The total amount of flavor components measured in raw oyster increased, while that of oyster cooking drip decreased in response to irradiation.

Processings and Quality Characteristics of the Oyster Crassostrea gigas Granular Flavor Seasoning from IQF Oyster Extract (개체동결 굴(Crassostrea gigas) 엑스분을 이용한 굴 풍미계 과립조미료의 제조 및 품질특성)

  • Hwang, Seok-Min;Cho, Jun-Hyun;Kim, Sang-Hyun;Lee, In-Seok;Oh, Kwang-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.49 no.6
    • /
    • pp.766-771
    • /
    • 2016
  • The pacific oyster Crassostrea gigas has a desirable taste and flavor that differs from those of other fish and shellfish. In order to develop a high value-added product from individually quick-frozen oyster extract (IQFOE), we prepared an oyster granular flavor seasoning (OGS) from IQFOE and characterized its qualities. The OGS was prepared by granular molding and fluidized bed drying with inosine monophosphate (IMP, 0.1%), yeast extract powder (1.4%), tangle extract powder (0.6%), monosodium glutamate (MSG, 5.0%), microcrystalline cellulose (0.6%), lactose (27.5%), salt (33.0%), spray-dried IQFOE (22.5%) as a powdered materials, and IQFOE ($Brix\;25^{\circ}$, 7.0%), soy sauce (0.4%) and water (1.7%) as a liquid materials. The moisture, crude protein, pH and salinity of the OGS were 3.4%, 12.5%, 6.50 and 32.0%, respectively. Especially, the OGS revealed very higher amino-N content (1,856.0 mg/100 g) than that (1,291.2-1,610.2 mg/100 g) of other commercial flavor seasonings. In taste-active compounds, free amino acid contents was 1,359.0 mg/100 g, and major ones were glutamic acid, taurine, hydroxyproline, glycine, lysine, phosphoserine, proline in order. And OGS showed good organoleptic qualities for taste, odor and general preference compared with commercial flavor seasonings on a local market.

Component Characteristics of Canned Oyster Processing Waste Water as a Food Resource (식품소재로서 굴통조림 가공부산액의 성분 특성)

  • 김진수;허민수;염동민
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.30 no.2
    • /
    • pp.299-306
    • /
    • 2001
  • As a part of basic investigation for utilization of canned food processing by-products, a food components of the canned oyster processing waste water such as boiled and released water(BRW), wash water(WW) were investigated and compared with hot-water extracts from oyster. From the results of measuring heavy metal conte수, viable cells and coliform group, the canned oyster processing waste waters might not invoke health risk in using food resource. The contents of taste compounds (free amino acids, ATP related compounds, TMA (O) and total creatinine) of BRW and WW accounted for about 254% and 95%, respectively, in comparison with those of control (hot-water extract from oyster). The BRW showed a very high content of salt in comparing to the WW and control. In descending order, the values of whiteness index was WW, control and BRW. Sensory scores for color, oyster flavor intensity and saline taste were not significantly different between WW and control. But, BRW had the highest score in oyster flavor intensity, while had the lowest score in color and saline taste. But, the color and saline taste of BRW might be able to control by some pretreatment (concentration and drying in mild condition, desalination and recipe control etc). These results indicated that BRW and WW generated from various step during canned oyster processing could be a potential food resource by controlling of saline taste and color intensity.

  • PDF

Volatile Flavor Constituents of Cooked Oyster Sauce Prepared from Individually Quick-frozen Oyster Crassostrea gigas Extract (IQF 굴(Crassostrea gigas) 복합엑스분을 이용한 굴 소스의 가열향기 성분)

  • Hwang, Young-Suk;Kim, Sang-Hyun;Shin, Tai-Sun;Cho, Jun-Hyun;Lee, In-Seok;Oh, Kwang-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.5
    • /
    • pp.668-673
    • /
    • 2015
  • The pacific oyster Crassostrea gigas has a desirable taste and flavor that differs from those of other fish and shellfish. In order to develop a high value-added product from individually quick-frozen oyster extract (IQFOE), we prepared an oyster sauce from IQFOE and characterized its volatile compounds using vacuum simultaneous steam distillationsolvent extraction / gas chromatography / mass spectrometry. The moisture, crude protein, crude ash, salinity, pH and volatile basic nitrogen contents of the oyster sauce were 60.6%, 8.2%, 9.2%, 9.3%, 5.7 and 21.0 mg/100 g, respectively. Seventy-six volatile compounds were detected in the cooked odor of the oyster sauce. These volatile compounds included 14 esters, including ethyl acetate, 13 nitrogen- containing compounds, including 2,4,6-trimethyl pyridine, 13 acids, including hexadecanoic acid, 12 alcohols, including ethyl alcohol and 6-methyl heptanol, 6 alkanes, 5 aldehydes, including benzaldehyde, 5 ketones, including 1-(2-furanyl)-ethanone, 4 furans, including 2-furancarboxaldehyde and 2-furanmethanol, 3 aromatic compounds, including d-limonene, and 1 miscellaneous compound. Esters, acids and nitrogen-containing compounds, and alcohols were the most abundant compounds in the odor of the cooked oyster sauce, with some aldehydes, ketones, and furans.

Optimization of Sensory Properties in Preparation of Canned Oyster Mushroom (느타리버섯 통조림 제조에 있어서 관능적 특성의 최적화)

  • 이기동;권중호;김진구;김현구
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.3
    • /
    • pp.443-449
    • /
    • 1997
  • Four-dimensional response surface methodology was applied to determine the optimum preparation conditions and to monitor sensory qualities of canned oyster mushroom during preparation. The optimum preparation conditions predicted for each corresponding sensory parameter of canned oyster mushroom were 181.29 g of oyster mushroom 205.36 ml of solution and 6.49min of roasting time for color, 214.01g, 195.79ml and 5.07min for appearance, 227.71g, 224.26ml and 6.50min for flavor, 250.30g, 183.63ml and 17.32min for taste, 211.59g, 178.21ml and 17.79min for mouth-feel, 249,.02g, 188.79ml and 17.80min for overall palatability of canned oyster mushroom, respectively. The optimum conditions, which satisfied with all sensory properties of canned oyster mushroom, were 240g, 200ml and 17min for content of oyster mushroom, content of solution and roasting time, respectively. Sensory scored predicted at the optimum conditions were in good agreement with experimental ones.

  • PDF

Processings and Quality Characteristics of the Oyster Sauce from IQF Oyster Crassostrea gigas (개체동결 굴(Crassostrea gigas)을 이용한 굴소스의 제조 및 품질특성)

  • Hwang, Young-Suk;Kim, Sang-Hyun;Kim, Byeong-Gyun;Kim, Seon-Geun;Cho, Jun-Hyun;Oh, Kwang-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.6
    • /
    • pp.833-838
    • /
    • 2015
  • To develop a value-added product from individually quick-frozen oyster Crassostrea gigas extract (IQFOE), we prepared two types of oyster sauce (OS): bottled OS (BOS) and retort pouched OS (ROS). We investigated processing conditions, quality metrics and flavor compounds in each type of sauce. We found that the most appropriate base formular for both BOS and ROS consisted of 40.0% IQFOE (Brix $30^{\circ}$), 15.0% sugar, 6.0% salt, 4.0% monosodium glutamate, 4.0% soy sauce, 3.5% starch, 3.0% yeast extract, 3.5% wheat flour and 21.0% water. The crude protein, salinity and amino-nitrogen contents of the BOS and ROS were 8.2 and 8.3%, 9.3 and 9.2%, and 539.2 and 535.2 mg/100 g, respectively. In commercial oyster sauces (COS), these values were 4.7-6.5%, 9.7-12.0%, and 244.7-504.2 mg/100 g, respectively. The total free amino acids content of ROS was 7,346.9 mg/100 g, and the main free amino acids were glutamic acid, taurine, proline, glycine and alanine. The inosinic monophosphate (IMP) content of the ROS was 131.6 mg/100 g, and the primary inorganic ions were Na, K, S and P. The present BOS and ROS have favorable organoleptic qualities and storage stability compared with COS, and are suitable for commercialization as high-flavor seasoning sauces.

Optimization of Hydrolysis Using Oyster and Oyster Cooking Drip (굴과 굴 자숙액을 이용한 가수분해 조건의 최적화)

  • Ryu, Tae-hyun;Kim, Jin-hee;Shin, Jiyoung;Kim, Sung-hoon;Yang, Ji-young
    • Journal of Life Science
    • /
    • v.25 no.7
    • /
    • pp.795-800
    • /
    • 2015
  • Oyster is a nutritionally good food ingredient. Also, oyster is used to make source for taste and flavor. This study tried to investigate optimal condition of hydrolysis of oyster and oyster cooking drip for better amino acid content to make good taste and flavor. And then this study characterized hydrolysate of oyster and oyster cooking drip. Enzymes are Acalase, Flavourzyme, Neutrase, and Protamax. The optimal condition for the highest enzyme activity is given by the company. Under the best condition of each enzymes, they react with the homogenized oyster and oyster cooking drip for 0.5, 1.0, 1.5, 2, 4, 6 hr. The degree of oysters’ hydrolysis is 13.2±0.1%. But, in the case of using enzyme, the rate of hydrolysis sharply increased as time went on during 2 hr. After 8 hr, the rate is 36.9~40.5%. Protamax showed 27.4±0.4% of hydrolysis rate in 2 hr. And the degree of oyster cooking drop hydrolysis is 42.7±0.1%. The highest of hydrolysate concentration is 72.1±0.1% using protamax. In the case of oyster, it has a similar tendency of all enzymes. Otherwise, the hydrolysate of oyster cooking drip had a difference among the enzymes. Composition of free amino acid of hydrolysate using protamax was investigated how much time showed highest rate of hydrolysis to find best amino acid composition. Hydrolysis using Protamax during 6 hr is selected for best condition.

Low temperature vacuum drying heat transfer characteristics of Korean raw oysters (한국산 굴의 저온진공건조 열전달특성에 관한 연구)

  • Kim, Kyung-gun;Song, Chi-sung;Choi, Se-hyun;Lee, Seo-Yeon;Mun, Soo-Beom
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • Oysters are rich in nutrients with good flavor, and disease prevention is required in both the East and the West for high-quality seafood. The best way to store and transport mass-produced oysters is using dry techniques. Using both hot and frozen drying technologies to obtain a perfectly dried oyster often destroys much of the flavor and nutrients found with the oyster meat. This study uses a low temperature vacuum drying technology to investigate the final weight ratio of wild and farmed dried oysters. Additionally, the heat transfer characteristics of steamed oysters are discussed in this paper.