• Title/Summary/Keyword: Oxygen plasma etching

Search Result 85, Processing Time 0.027 seconds

Oxygen Plasma Characterization Analysis for Plasma Etch Process

  • Park, Jin-Su;Hong, Sang-Jeen
    • Journal of the Speleological Society of Korea
    • /
    • no.78
    • /
    • pp.29-31
    • /
    • 2007
  • This paper is devoted to a study of the characterization of the plasma state. For the purpose of monitoring plasma condition, we experiment on reactive ion etching (RIE) process. Without actual etch process, generated oxygen plasma, measurement of plasma emission intensity. Changing plasma process parameters, oxygen flow, RF power and chamber pressure have controlled. Using the optical emission spectroscopy (OES), we conform to the unique oxygen wavelength (777nm), the most powerful intensity region of the designated range. Increase of RF power and chamber pressure, emission intensity is increased. oxygen flow is not affect to emission intensity.

Controllable Etching of 2-Dimentional Hexagonal Boron Nitride by Using Oxygen Capacitively Coupled Plasma

  • Qu, Deshun;Yoo, Won Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.170-170
    • /
    • 2013
  • We present a novel etching technique for 2-dimentional (2-D) hexagonal boron nitride (h-BN) by using capacitively coupled plasma (CCP) of oxygen combined with a post-treatment by de-ionized (DI) water. Oxygen CCP etching process for h-BN has been systematically studied. It is found that a passivation layer was generated to obstruct further etching while it can be easily and radically removed by DI water. An essential cleaning effect also has been observed in the etching process, organic residues are successfully removed and the surface roughness has much decreased. Considering h-BN is the most important 2-D dielectric material and its potential application for graphene to silicon-based electronic devices, such an etching method can be widely used to control the 2-D h-BN thickness and improve the surface quality.

  • PDF

On the Etching Mechanism of Parylene-C in Inductively Coupled O2 Plasma

  • Shutov, D.A.;Kim, Sung-Ihl;Kwon, Kwang-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.4
    • /
    • pp.156-162
    • /
    • 2008
  • We report results on a study of inductively coupled plasma (ICP) etching of Parylene-C (poly-monochloro-para-xylylene) films using an $O_2$ gas. Effects of process parameters on etch rates were investigated and are discussed in this article from the standpoint of plasma parameter measurements, performed using a Langmuir probe and modeling calculation. Process parameters of interest include ICP source power and pressure. It was shown that major etching agent of polymer films was oxygen atoms O($^3P$). At the same time it was proposed that positive ions were not effective etchant, but ions played an important role as effective channel of energy transfer from plasma towards the polymer.

Helium/Oxygen Atmospheric Pressure Plasma Treatment on Poly(ethylene terephthalate) and Poly(trimethylene terephthalate) Knitted Fabrics: Comparison of Low-stress Mechanical/Surface Chemical Properties

  • Hwang Yoon Joong;McCord Marian G.;Kang Bok Choon
    • Fibers and Polymers
    • /
    • v.6 no.2
    • /
    • pp.113-120
    • /
    • 2005
  • Helium-oxygen plasma treatments were conducted to modify poly(trimethylene terephthalate) (PIT) and poly(ethylene terephthalate) (PET) warp knitted fabrics under atmospheric pressure. Lubricant and contamination removals by plasma etching effect were examined by weight loss $(\%)$ measurements and scanning electron microscopy (SEM) analysis. Surface oxidation by plasma treatments was revealed by x-ray photoelectron spectroscopy (XPS) analyses, resulting in formation of hydrophilic groups and moisture regain $(\%)$ enhancement. Low-stress mechanical properties (evaluated by Kawabata evaluation system) and bulk properties (air permeability and bust strength) were enhanced by plasma treatment. Increasing interfiber and interyarn frictions might play important roles in enhancing surface property changes by plasma etching effect, and then changing low-stress mechanical properties and bulk properties for both fabrics.

Effects of Color Depth on Wool and Silk Fabrics Treated Sputter Etching (Sputter etching에 의한 양모, 견직물의 농색효과)

  • Cho, Hwan;Gu, Kang
    • Textile Coloration and Finishing
    • /
    • v.6 no.3
    • /
    • pp.44-51
    • /
    • 1994
  • Wool and silk fabrics dyed with C.l. Acid Black 155 were subjected to sputter etching and exposed to a low temperature argon plasma. Color depth of shade of the fabrics increased considerably, but sputter etching was more effectively than argon low temperature plasma treatment. And measured for any significant chemical modification by ESCA (XPS). Sputter etching and argon low temperature plasma treatments incorporated oxygen atoms into the surface.

  • PDF

Enhancement of Size Gradient of Imprinted Nanopattern by Plasma Etching under a Nonuniform Magnetic Field

  • Lim, Jonghwan;Kim, Soohyun;Kim, Da Sol;Jeong, Mira;Lee, Jae-Jong;Yun, Wan Soo
    • Applied Science and Convergence Technology
    • /
    • v.24 no.5
    • /
    • pp.184-189
    • /
    • 2015
  • We report a simple way to enhance the size gradient of an imprinted nanopattern through oxygen plasma etching under a nonuniform magnetic field. A sample substrate was placed next to a magnet, and then a nonuniform magnetic field condition was formed around the sample. Using oxygen plasma etching, a line pattern having an initial width of 273 nm was gradually modified from 248 nm at one end to 182 nm at the other end. Controlling the arrangement of the magnet and sample, we could induce a triangular shape size gradient. We verified that the gradually modified nanopatterns we produced are applicable to continual optical property control, showing a possibility to be utilized for optical components such as gratings and polarizers.

Carbon 계 유기막질 Plasma Etching에 있어 COS (Carbonyl Sulfide) Gas 특성에 관한 연구

  • Kim, Jong-Gyu;Min, Gyeong-Seok;Kim, Chan-Gyu;Nam, Seok-U;Gang, Ho-Gyu;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.460-460
    • /
    • 2012
  • 반도체 Device가 Shrink 함에 따라 Pattern Size가 작아지게 되고, 이로 인해 Photo Resist 물질 자체만으로는 원하는 Patterning 물질들을 Plasma Etching 하기가 어려워지고 있다. 이로 인해 Photoresist를 대체할 Hard Mask 개념이 도입되었으며, 이 Hardmask Layer 중 Amorphous Carbon Layer 가 가장 널리 사용되고 지고 있다. 이 Amorphous Carbon 계열의 Hardmask를 Etching 하기 위해서 기본적으로 O2 Plasma가 사용되는데, 이 O2 Plasma 내의 Oxygen Species들이 가지는 등 방성 Diffusion 특성으로 인해, 원하고자 하는 미세 Pattern의 Vertical Profile을 얻는데 많은 어려움이 있어왔다. 이를 Control 하기 인해 O2 Plasma Parameter들의 변화 및 Source/Bias Power 등의 변수가 연구되어 왔으며, 이와 다른 접근으로, N2 및 CO, CO2, SO2 등의 여러 Additive Gas 들의 첨가를 통해 미세 Pattern의 Profile을 개선하고, Plasma Etching 특성을 개선하는 연구가 같이 진행되어져 왔다. 본 논문에서 VLSI Device의 Masking Layer로 사용되는, Carbon 계 유기 층의 Plasma 식각 특성에 대한 연구를 진행하였다. Plasma Etchant로 사용되는 O2 Plasma에 새로운 첨가제 가스인 카르보닐 황화물 (COS) Gas를 추가하였을 시 나타나는 Plasma 내의 변화를 Plasma Parameter 및 IR 및 XPS, OES 분석을 통하여 규명하고, 이로 인한 Etch Rate 및 Plasma Potential에 대해 비교 분석하였다. COS Gas를 정량적으로 추가할 시, Plasma의 변화 및 이로 인해 얻어지는 Pattern에서의 Etchant Species들의 변화를 통해 Profile의 변화를 Mechanism 적으로 규명할 수 있었으며, 이로 인해 기존의 O2 Plasma를 통해 얻어진 Vertical Profile 대비, COS Additive Gas를 추가하였을 경우, Pattern Profile 변화가 개선됨을 최종적으로 확인 할 수 있었다.

  • PDF

Surface Analysis of Fluorine-Plasma Etched Y-Si-Al-O-N Oxynitride Glasses

  • Lee, Jung-Ki;Hwang, Seong-Jin;Lee, Sung-Min;Kim, Hyung-Sun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.38.1-38.1
    • /
    • 2009
  • Plasma etching is an essential process for electronic device industries and the particulate contamination during plasma etching has been interested as a big issue for the yield of productivity. The oxynitride glasses have a merit to prevent particulate contamination due to their amorphous structure and plasma etching resistance. The YSiAlON oxynitride glasses with increasing nitrogen content were manufactured. Each oxynitride glasses were fluorine-plasma etched and their plasma etching rate and surface roughness were compared with reference materials such as sapphire, alumina and quartz. The reinforcement mechanism of plasma etching resistance of the YSiAlON glasses studied by depth profiling at plasma etched surface using electron spectroscopy for chemical analysis. The plasma etching rate decreased with nitrogen content and there was no selective etching at the plasma etched surface of the oxynitride glasses. The concentration of silicon was very low due to the generation of SiF4 very volatile byproduct and the concentration of aluminum and yttrium was relatively constant. The elimination of silicon atoms during plasma etching was reduced with increasing nitrogen content because the content of the nitrogen was constant. And besides, the concentration of oxygen was very low on the plasma etched surface. From the study, the plasma etching resistance of the glasses may be improved by the generation of nitrogen related structural groups and those are proved by chemical composition analysis at plasma etched surface of the YSiAlON oxynitride glasses.

  • PDF

Analysis and Reduction of Impurity Contamination Induced by Plasma Etching on Si Surface (플라즈마 식각에 의하여 실리콘 표면에 유기된 불순물 오염의 분석 및 제거)

  • Cho, Sun-Hee;Lee, Won-Jong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.12
    • /
    • pp.1078-1084
    • /
    • 2006
  • Impurity contamination induced by $CF_4\;and\;HBr/Cl_2/O_2$ plasma etching on Si surface was examined by using surface spectroscopes. XPS(x-ray photoelectron spectroscopy) surface analysis showed that F of 0.4 at % exists in the surface layer in the form of Si-F bonding but Br and Cl are below the detection limit $(0.1{\sim}1.0%)$ of the spectroscope. Static-SIMS(secondary ion mass spectrometry) surface analysis showed that the etched Si surface was contaminated with etching gas elements such as H, F, Cl and Br, and they existed to the depth of about $20{\sim}40nm$. The etched Si surface was treated with three different methods that were HF dip, thermal oxidation followed by HF dip and oxygen-plasma oxidation followed by HF dip. They showed an effect in reducing the impurity contamination and the oxygen-plasma oxidation followed by HF dipping method appears to be a little bit more effective.

Control the Length of Carbon Nanotube Array by Using Oxygen Plasma Etching Process (산소플라즈마 에칭공정을 응용한 탄소나노튜브 Array 길이 제어 연구)

  • Song, Yoo-Jin;Kang, Seong-Jun
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.6
    • /
    • pp.488-493
    • /
    • 2009
  • We developed a simple method to control the length of carbon nanotube array by using oxygen plasma etching. In this way, we could obtain a carbon nanotube with a uniform length (20, 30, 50, $70\;{\mu}m$), that was parallel to the substrate. Moreover, our growing method of carbon nanotube array gives a uniform diameter ~3.5nm, which is consistent with our previous results. Using the same etching method, we demonstrated the carbon nanotube radio frequency identification (RFID) antenna. The results could be useful for carbon nanotube applications such as flexible and transparent conductive films.