Browse > Article
http://dx.doi.org/10.5757/JKVS.2009.18.6.488

Control the Length of Carbon Nanotube Array by Using Oxygen Plasma Etching Process  

Song, Yoo-Jin (Division of Industrial Metrology, Korea Research Institute of Standards and Sciences)
Kang, Seong-Jun (Division of Industrial Metrology, Korea Research Institute of Standards and Sciences)
Publication Information
Journal of the Korean Vacuum Society / v.18, no.6, 2009 , pp. 488-493 More about this Journal
Abstract
We developed a simple method to control the length of carbon nanotube array by using oxygen plasma etching. In this way, we could obtain a carbon nanotube with a uniform length (20, 30, 50, $70\;{\mu}m$), that was parallel to the substrate. Moreover, our growing method of carbon nanotube array gives a uniform diameter ~3.5nm, which is consistent with our previous results. Using the same etching method, we demonstrated the carbon nanotube radio frequency identification (RFID) antenna. The results could be useful for carbon nanotube applications such as flexible and transparent conductive films.
Keywords
Carbon nanotube; Uniform length; Oxygen plasma etching;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 International Technology Roadmap for Semiconductors (ITRS), Semiconductor Industry Association (2000)
2 S. J. Kang, C. Kocabas, T. Ozel, M. Shim, N. Pimparkar, M. A. Alam, S. Rotkin, and J. A. Rogers, Nature Nanotechnol. 2, 230-236 (2007)   DOI   ScienceOn
3 M. W. Rowell, M. A. Topinka, M. D. McGehee, H-J. Prall, G. Dennler, and N. S. Sariciftci, Appl. Phys. Lett. 88, 233506 (2006)   DOI   ScienceOn
4 K. Liu, Y. Sun, L. Chen, C. Feng, X. Feng, K. Jiang, Y. Zhao, and S. Fan, Nano Lett. 8, 700-705 (2008)   DOI   ScienceOn
5 C. Kocabas, S. J. Kang, T. Ozel, M. Shim, and J. A. Rogers, J. Phys. Chem. C 111, 17879 (2007)   DOI   ScienceOn
6 G. Zhang et al., Proc. Natl. Acad. Sci. U.S.A. 102, 16141 (2005)   DOI   ScienceOn
7 G. F. Close, S. Yasuda, B. Paul, S. Fujita, and H-SP. Wong, Nano Lett. 8, 706 (2008)   DOI   ScienceOn
8 C. M. Aguirre, S. Auvray, S. Pigeon, R. Izquierdo, P. Desjardins, and R. Martel, Appl. Phys. Lett. 88, 183104 (2006)   DOI   ScienceOn
9 A. E. Aliev, J. Oh, M. E. Kozlov, A. A. Kuznetsov, S. Fang, and A. F. Fonseca, Science 323, 1575-1578 (2009)   DOI   PUBMED   ScienceOn
10 J. Martinez, T. D. Yuzvinsky, A. M. Fennimore, A. Zettl, R. Garcíia, and C. Bustamante, Nanotechnol. 16, 2493 (2005)   DOI   ScienceOn
11 S. K. Lee, J. H. Moon, S. H. Hwang, G. C. Kim, D. Y. Lee, D. H. Kim, and M. H. Jeon, J. Korean Vac. Soc. 17, 1, 67 (2008)   과학기술학회마을   DOI   ScienceOn
12 S. I. Jung, S. K. Choi, and S. B. Lee, J. Korean Vac. Soc. 17, 4, 365 (2008)   과학기술학회마을   DOI   ScienceOn
13 S. K. Pal, S. Talapatra, S. Kar, L. Ci, R. Vajtai, T. Borca-Tasciuc, L. S. Schadler, and P. M. Ajayan, Nanotechnol. 19, 045610 (2008)   DOI   ScienceOn
14 S. Yasuda, D. N. Futaba, M. Yumura, S. Iijima, and K. Hata, Appl. Phys. Lett. 93, 143115 (2008)   DOI   ScienceOn
15 Z. Chen, J. Appenzeller, Y-M. Lin, J. S. Oakley, A. G. Rinzler, and J. Tang, Science 311, 1735 (2006)   DOI   PUBMED   ScienceOn
16 J. Ahn, H. Kim, K. J. Lee, S. Jeon, S. J. Kang, Y. Sun, R. G. Nuzzo, and J. A. Rogers, Nature Nanotechnol. 15, 1754-1757 (2006)
17 S. Akita and Y. Nakayama, Jpn. J. Appl. Phys. 41, 4887 (2002)   DOI
18 S. J. Kang, C. Kocabas, H-S. Kim, Q. Cao, M. A. Meitl, D-Y. Khang, and J. A. Rogers, Nano Lett. 7, 3343-3348 (2007)   DOI   ScienceOn