DOI QR코드

DOI QR Code

Control the Length of Carbon Nanotube Array by Using Oxygen Plasma Etching Process

산소플라즈마 에칭공정을 응용한 탄소나노튜브 Array 길이 제어 연구

  • Song, Yoo-Jin (Division of Industrial Metrology, Korea Research Institute of Standards and Sciences) ;
  • Kang, Seong-Jun (Division of Industrial Metrology, Korea Research Institute of Standards and Sciences)
  • 송유진 (한국표준과학연구원 산업측정표준본부) ;
  • 강성준 (한국표준과학연구원 산업측정표준본부)
  • Published : 2009.11.30

Abstract

We developed a simple method to control the length of carbon nanotube array by using oxygen plasma etching. In this way, we could obtain a carbon nanotube with a uniform length (20, 30, 50, $70\;{\mu}m$), that was parallel to the substrate. Moreover, our growing method of carbon nanotube array gives a uniform diameter ~3.5nm, which is consistent with our previous results. Using the same etching method, we demonstrated the carbon nanotube radio frequency identification (RFID) antenna. The results could be useful for carbon nanotube applications such as flexible and transparent conductive films.

탄소나노튜브 Array를 고성능의 전자소자로 응용하고자 함에 있어, 탄소나노튜브의 전기적 특성을 결정짓는 길이와 직경을 제어하는 일은 매우 중요하다. 본 연구에서는 비교적 간단한 공정을 통하여 탄소나노튜브의 길이를 제어하는 기술을 개발 하였다. 기판에 평행하게 정렬된 탄소나노튜브 Array 박막을 열화학기상증착법을 이용하여 성장 시킨 후, 간단한 포토 리소그래피 공정과 산소 플라즈마 에칭 공정을 통하여 균일한 길이의 탄소나노튜브 Array를 기판위에 형성하였다. 본 연구를 통하여 개발된 균일한 길이의 고밀도 탄소나노튜브 Array는 대면적의 나노전자 소자뿐만 아니라, 태양전지, 바이오센서 등에 적용할 수 있다.

Keywords

References

  1. International Technology Roadmap for Semiconductors (ITRS), Semiconductor Industry Association (2000)
  2. J. Ahn, H. Kim, K. J. Lee, S. Jeon, S. J. Kang, Y. Sun, R. G. Nuzzo, and J. A. Rogers, Nature Nanotechnol. 15, 1754-1757 (2006)
  3. S. J. Kang, C. Kocabas, T. Ozel, M. Shim, N. Pimparkar, M. A. Alam, S. Rotkin, and J. A. Rogers, Nature Nanotechnol. 2, 230-236 (2007) https://doi.org/10.1038/nnano.2007.77
  4. Z. Chen, J. Appenzeller, Y-M. Lin, J. S. Oakley, A. G. Rinzler, and J. Tang, Science 311, 1735 (2006) https://doi.org/10.1126/science.1122797
  5. G. F. Close, S. Yasuda, B. Paul, S. Fujita, and H-SP. Wong, Nano Lett. 8, 706 (2008) https://doi.org/10.1021/nl0730965
  6. A. E. Aliev, J. Oh, M. E. Kozlov, A. A. Kuznetsov, S. Fang, and A. F. Fonseca, Science 323, 1575-1578 (2009) https://doi.org/10.1126/science.1168312
  7. C. M. Aguirre, S. Auvray, S. Pigeon, R. Izquierdo, P. Desjardins, and R. Martel, Appl. Phys. Lett. 88, 183104 (2006) https://doi.org/10.1063/1.2199461
  8. M. W. Rowell, M. A. Topinka, M. D. McGehee, H-J. Prall, G. Dennler, and N. S. Sariciftci, Appl. Phys. Lett. 88, 233506 (2006) https://doi.org/10.1063/1.2209887
  9. S. K. Lee, J. H. Moon, S. H. Hwang, G. C. Kim, D. Y. Lee, D. H. Kim, and M. H. Jeon, J. Korean Vac. Soc. 17, 1, 67 (2008) https://doi.org/10.5757/JKVS.2008.17.1.067
  10. S. I. Jung, S. K. Choi, and S. B. Lee, J. Korean Vac. Soc. 17, 4, 365 (2008) https://doi.org/10.5757/JKVS.2008.17.4.365
  11. S. J. Kang, C. Kocabas, H-S. Kim, Q. Cao, M. A. Meitl, D-Y. Khang, and J. A. Rogers, Nano Lett. 7, 3343-3348 (2007) https://doi.org/10.1021/nl071596s
  12. S. Yasuda, D. N. Futaba, M. Yumura, S. Iijima, and K. Hata, Appl. Phys. Lett. 93, 143115 (2008) https://doi.org/10.1063/1.2987480
  13. K. Liu, Y. Sun, L. Chen, C. Feng, X. Feng, K. Jiang, Y. Zhao, and S. Fan, Nano Lett. 8, 700-705 (2008) https://doi.org/10.1021/nl0723073
  14. S. K. Pal, S. Talapatra, S. Kar, L. Ci, R. Vajtai, T. Borca-Tasciuc, L. S. Schadler, and P. M. Ajayan, Nanotechnol. 19, 045610 (2008) https://doi.org/10.1088/0957-4484/19/04/045610
  15. J. Martinez, T. D. Yuzvinsky, A. M. Fennimore, A. Zettl, R. Garcíia, and C. Bustamante, Nanotechnol. 16, 2493 (2005) https://doi.org/10.1088/0957-4484/16/11/004
  16. S. Akita and Y. Nakayama, Jpn. J. Appl. Phys. 41, 4887 (2002) https://doi.org/10.1143/JJAP.41.4887
  17. C. Kocabas, S. J. Kang, T. Ozel, M. Shim, and J. A. Rogers, J. Phys. Chem. C 111, 17879 (2007) https://doi.org/10.1021/jp071387w
  18. G. Zhang et al., Proc. Natl. Acad. Sci. U.S.A. 102, 16141 (2005) https://doi.org/10.1073/pnas.0507064102

Cited by

  1. Improvement of Electron Emission Characteristics and Emission Stability from Metal-coated Carbon Nanotubes vol.20, pp.6, 2011, https://doi.org/10.5757/JKVS.2011.20.6.436
  2. Effect of Injection Stage of SF6Gas Incorporation on the Limitation of Carbon Coils Geometries vol.20, pp.5, 2011, https://doi.org/10.5757/JKVS.2011.20.5.374
  3. Ethical Issues in Nanomaterials Technology and Relevant Policy Recommendations vol.19, pp.6, 2010, https://doi.org/10.5757/JKVS.2010.19.6.397