• Title/Summary/Keyword: Oxygen membrane

Search Result 877, Processing Time 0.031 seconds

Neuroprotective Effect of Scopoletin from Angelica dahurica on Oxygen and Glucose Deprivation-exposed Rat Organotypic Hippocampal Slice Culture

  • Son, Dong-Wook;Lee, Pyeong-Jae;Lee, Jong-Seok;Lee, Sang-Hyun;Choi, Sang-Yoon;Lee, Jong-Won;Kim, Sun-Yeou
    • Food Science and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.632-635
    • /
    • 2007
  • This study examined the neuroprotective effect of scopoletin from Angelica dahurica against oxygen and glucose deprivation-induced neurotoxicity in a rat organotypic hippocampal slice culture. Scopoletin reduced the propidium iodide (PI) uptake, which is an indication of impaired cell membrane integrity. In addition, it inhibited the loss of NeuN, which represents the viability of neuronal cells. The results suggests that scopoletin from A. dahurica protects neuronal cells from the damage caused by oxygen and glucose deprivation.

Effects of Curcumin on Sperm Motility, Viability, Mitochondrial Activity and Plasma Membrane Integrity in Boar Semen

  • Lee, A-Sung;Lee, Sang-Hee;Lee, Seunghyung;Yang, Boo-Keun
    • Biomedical Science Letters
    • /
    • v.23 no.4
    • /
    • pp.406-410
    • /
    • 2017
  • Curcumin is known as a natural antioxidant, decreasing oxidative stress in animal cells. Generally, oxidative stress induces reactive oxygen species in sperm and leads to decreased sperm characteristics in pigs. Therefore, this study investigated the influence of curcumin on sperm motility, viability, mitochondrial activity and plasma membrane integrity in pigs. Curcumin (0, 5 and $10{\mu}M$) was treated in boar semen, which were incubated for 9 hours in $37^{\circ}C$. Then, motility, viability, mitochondrial activity, plasma membrane integrity of sperm was analyzed every 3 hours. In the results, sperm motility was significantly increased by $5{\mu}M$ curcumin after 3 and 9 hours after incubation, and viability was significantly higher in $5{\mu}M$ curcumin treatment at 3 hours (P<0.05). Similarly, sperm mitochondrial activity and plasma membrane integrity were significantly increased by $5{\mu}M$ curcumin at 3, 6 and 9 hours after incubation (P<0.05). There results suggest that curcumin improve sperm characteristics such as motility, viability, mitochondrial activity, and plasma membrane integrity, and may exert a positive effect on sperm fertility in pigs.

Serum Leakage Control using PP/PDMS Composite Membrane (PP/PDMS 복합막을 이용한 혈청누출 제어)

  • 김기범;이삼철;정순량;정경락
    • Membrane Journal
    • /
    • v.10 no.1
    • /
    • pp.47-53
    • /
    • 2000
  • The artificial lung is a device used to replace the function of the lungs. The major function of the lung is to remove carbon dioxide from the venous blood and replace it with oxygen, or arterialize the blood. And the function of the artificial lung is to provide an adequate amount of oxygenated blood to all the tissues of body during the open heart surgery. Extracorporeal life support(ECLS or ECMO) is standard treatment for severe respiratory failure but poses many contributions to future lung transplantation. Artificial Lung or membrane oxygenators available today, based on microporous polypropylene fibers, are associated with two major problems. They require systemic anticoagulation of the patient and they allow serum leakage across the membrane from the blood side to the gas side during long-term use. We obtained newly fabricated polypropylene(PP)/polydimethylsiloxane(PDMS) membranes which combined PP membrane, a microporous support layer with PDMS, and we had investiaged a technique for minimizing serum lekage of polypropylene(PP) membrane. The gas permeability of each PP/PDMS membrane was almost constant before and after the whole blood test by Lee-White method, while that of PP membrane was significantly reduced. Therefore the PP/PDMS membrane could be prevented serum leakage of PP membrane. In addition, the gas permeability of $CO_2$ in PP/PDMS membrane was 11.5 times higher as compared with that of $O_2$.

  • PDF

Plasma Surface Modification of Graphene and Combination with Bacteria Cellulose (Graphene의 플라즈마 표면 개질과 박테리아 셀룰로오스와의 결합성 검토)

  • Yim, Eun-Chae;Kim, Seong-Jun;Oh, Il-Kwon;Kee, Chang-Doo
    • Korean Chemical Engineering Research
    • /
    • v.51 no.3
    • /
    • pp.388-393
    • /
    • 2013
  • The study was focused to evaluate the possibility for combination membrane of bacterial cellulose (BC) and graphene with high electrical properties. BC with natural polymer matrix was known to have strong physical strength. For the combination of graphene with BC, the surface of graphene was modified with oxygen plasma by changing strength and time of radio waves in room temperature. Water contact angle of modified graphene grew smaller from $130^{\circ}$ to $12^{\circ}$. XPS analysis showed that oxygen content after treatment increased from 2.99 to 10.98%. Damage degree of graphene was examined from $I_D/I_G$ ratio of Raman analysis. $I_D/I_G$ ratio of non-treated graphene (NTG) was 0.11, and 0.36 to 0.43 in plasma treated graphene (PTG), increasing structural defects of PTG. XRD analysis of PTG membrane with BC was $2{\theta}$ same to BC only, indicating chemically combined membrane. In FT-IR analysis, 1,000 to 1,300 $cm^{-1}$ (C=O) peak indicating oxygen radicals in PTG membrane had formed was larger than NTG membrane. The results suggest that BC as an alternation of plastic material for graphene combination has a possibility in some degree on the part like transparent conductive films.

Estimation of BOD in wastewater treatment plant by using different ANN algorithms

  • BAKI, Osman Tugrul;ARAS, Egemen
    • Membrane and Water Treatment
    • /
    • v.9 no.6
    • /
    • pp.455-462
    • /
    • 2018
  • The measurement and monitoring of the biochemical oxygen demand (BOD) play an important role in the planning and operation of wastewater treatment plants. The most basic method for determining biochemical oxygen demand is direct measurement. However, this method is both expensive and takes a long time. A five-day period is required to determine the biochemical oxygen demand. This study has been carried out in a wastewater treatment plant in Turkey (Hurma WWTP) in order to estimate the biochemical oxygen demand a shorter time and with a lower cost. Estimation was performed using artificial neural network (ANN) method. There are three different methods in the training of artificial neural networks, respectively, multi-layered (ML-ANN), teaching learning based algorithm (TLBO-ANN) and artificial bee colony algorithm (ABC-ANN). The input flow (Q), wastewater temperature (t), pH, chemical oxygen demand (COD), suspended sediment (SS), total phosphorus (tP), total nitrogen (tN), and electrical conductivity of wastewater (EC) are used as the input parameters to estimate the BOD. The root mean squared error (RMSE) and the mean absolute error (MAE) values were used in evaluating performance criteria for each model. As a result of the general evaluation, the ML-ANN method provided the best estimation results both training and test series with 0.8924 and 0.8442 determination coefficient, respectively.

Separation of dissolved gases from water using synthesized gases based on exhalation characteristics

  • Heo, Pil Woo;Park, In Sub
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1347-1353
    • /
    • 2014
  • It's possible for a human to breathe under water, if dissolved oxygen is effectively used. Fish can stay under water using the gill which extracts dissolved oxygen from water. Water includes small amounts of oxygen, so a human needs larger amounts of water to acquire oxygen enough for underwater breathing. The exhalation gas from a human is another method to get higher amounts of oxygen under water. It mainly composes of oxygen, nitrogen and carbon dioxide. So, if only carbon dioxide is decreased, the exhalation gas has good characteristics for breathing of a human under water. In this paper, composition of the exhalation gas from a human was analyzed using GC. Based on these results, the synthesized gas was prepared and mixed into water which was used for experimental devices to analyze separation characteristics of dissolved gases from water. Experimental devices included a water pump, a hollow fiber membrane module and a vacuum pump. The effects of pressure and water flow on separation characteristics of synthesized gas were investigated. The compositions of gases separated from water using synthesized gas were investigated using GC. These results expect to be applied to the development of underwater breathing technology for a human.

Characterization of Double-layer Optical Sensing Membranes for Dual Sensing of Dissolved Oxygen Concentrations and pH and Their Application to the On-line Monitoring of Fermentation Processes (용존산소농도와 pH의 동시 검출용 이중층 광학 센서막의 특성 및 발효공정의 온라인 모니터링에의 응용)

  • Kim, Chun-Kwang;Lee, Jong-Il
    • Applied Chemistry for Engineering
    • /
    • v.20 no.4
    • /
    • pp.370-374
    • /
    • 2009
  • A double-layer optical sensing membrane has been fabricated to measure the concentration of dissolved oxygen (DO) and pH value simultaneously. (tris(4,7-diphenyl-1,10-phenanthroline (Rudpp) ruthenium(II)) as a DO sensitive dye has been mixed in the methyl trimethoxy silane (MTMS) sol-gel solution and coated onto one well in a 24-well microtiter plate. On the DO-sensing layer the GA (3-glycidoxypropyl trimethoxy silane (GPTMS), 3-aminopropyl trimethoxy silane (APTMS)) sol-gel solution mixed with 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS) has been coated and used to measure pH values. The double-layer sensing membrane was affected by ionic strength and temperature. The double-layer sensing membrane for DO and pH has been applied to online monitor in microorganism cultivation processes and showed a good performance.

Antitumor Effects of Camptothecin Combined with Conventional Anticancer Drugs on the Cervical and Uterine Squamous Cell Carcinoma Cell Line SiHa

  • Ha, Sang-Won;Kim, Yun-Jeong;Kim, Won-Yong;Lee, Chung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.2
    • /
    • pp.115-121
    • /
    • 2009
  • Functional defects in mitochondria are involved in the induction of cell death in cancer cells. We assessed the toxic effect of camptothecin against the human cervical and uterine tumor cell line SiHa with respect to the mitochondria-mediated cell death process, and examined the combined effect of camptothecin and anticancer drugs. Camptothecin caused apoptosis in SiHa cells by inducing mitochondrial membrane permeability changes that lead to the loss of mitochondrial membrane potential, decreased Bcl-2 levels, cytochrome c release, caspase-3 activation, formation of reactive oxygen species and depletion of GSH. Combination of camptothecin with other anticancer drugs (carboplatin, paclitaxel, doxorubicin and mitomycin c) or signaling inhibitors (farnesyltransferase inhibitor and ERK inhibitor) did not enhance the camptothecin-induced cell death and caspase-3 activation. These results suggest that camptothecin may cause cell death in SiHa cells by inducing changes in mitochondrial membrane permeability, which leads to cytochrome c release and activation of caspase-3. This effect is also associated with increased formation of reactive oxygen species and depletion of GSH. Combination with other anticancer drugs (or signaling inhibitors) does not appear to increase the anti-tumor effect of camptothecin against SiHa cells, but rather may reduce it. Combination of camptothecin with other anticancer drugs does not seem to provide a benefit in the treatment of cervical and uterine cancer compared with camptothecin monotherapy.

A Study on Oxygen Diffusion Characteristics According to Changes in Flow Field Shape of Polymer Electrolyte Membrane Fuel Cell Metallic Bipolar Plate for Building (건물용 고분자 전해질 연료전지 금속분리판 유동장 형상 변화에 따른 산소 확산 특성에 대한 연구)

  • PARK, DONGHWAN;SOHN, YOUNG-JUN;CHOI, YOON-YOUNG;KIM, MINJIN;HONG, JONGSUP
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.4
    • /
    • pp.245-255
    • /
    • 2021
  • Various studies about metallic bipolar plates have been conducted to improve fuel cell performance through flow field design optimization. These research works have been mainly focused on fuel cells for vehicle, but not fuel cells for building. In order to reduce the price and volume of fuel cell stacks for building, it is necessary to apply a metallic flow field, In this study, for a metallic flow field applied to a fuel cell for building, the effect of a change in the flow field shape on the performance of a polymer electrolyte membrane fuel cell was confirmed using a model and experiments with a down-sizing single cell. As a result, the flow field using a metal foam outperforms the channel type flow field because it has higher internal differential pressure and higher reactants velocity in gas diffusion layer, resulting in higher water removal and higher oxygen concentration in the catalyst layer than the channel type flow field. This study is expected to contribute to providing basic data for selecting the optimal flow field for the full stack of polymer electrolyte membrane fuel cells for buildings.

Durability Evaluation of PEMFC Electrode Using Oxygen as Cathode Gas (PEMFC Cathode 산소 조건에서 전극 촉매 내구성 평가)

  • Oh, Sohyeong;Lim, Daehyeon;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.11-15
    • /
    • 2021
  • In this study, we tried to develop a method of accelerated degradation of the electrode by simply using a electronic loader without using a potentiostat to evaluate the durability of the electrode catalyst. To this end, the durability of the electrode was evaluated by repeating the stepwise voltage change using the self-generated voltage by introducing oxygen without introducing nitrogen into the cathode. For accurate electrode durability evaluation, that is, in order not to deteriorate the polymer membrane, the high voltage was lowered to 0.9 V in stepwise voltage change and the relative humidity was 100% to suppress degradation of the polymer membrane due to radicals. After 30,000 cycles (50 hours) of voltage change, the electrode active area decreased by 41.4%. It was confirmed that the electrode was deteriorated, but the polymer membrane was not deteriorated, that there was no increase in hydrogen permeability, no decrease in membrane thickness, and no increase in HFR(High Frequency Resistance).