DOI QR코드

DOI QR Code

Durability Evaluation of PEMFC Electrode Using Oxygen as Cathode Gas

PEMFC Cathode 산소 조건에서 전극 촉매 내구성 평가

  • Oh, Sohyeong (Department of Chemical Engineering, Sunchon National University) ;
  • Lim, Daehyeon (Department of Chemical Engineering, Sunchon National University) ;
  • Park, Kwonpil (Department of Chemical Engineering, Sunchon National University)
  • Received : 2020.09.21
  • Accepted : 2020.11.05
  • Published : 2021.01.25

Abstract

In this study, we tried to develop a method of accelerated degradation of the electrode by simply using a electronic loader without using a potentiostat to evaluate the durability of the electrode catalyst. To this end, the durability of the electrode was evaluated by repeating the stepwise voltage change using the self-generated voltage by introducing oxygen without introducing nitrogen into the cathode. For accurate electrode durability evaluation, that is, in order not to deteriorate the polymer membrane, the high voltage was lowered to 0.9 V in stepwise voltage change and the relative humidity was 100% to suppress degradation of the polymer membrane due to radicals. After 30,000 cycles (50 hours) of voltage change, the electrode active area decreased by 41.4%. It was confirmed that the electrode was deteriorated, but the polymer membrane was not deteriorated, that there was no increase in hydrogen permeability, no decrease in membrane thickness, and no increase in HFR(High Frequency Resistance).

본 연구에서는 전극촉매 내구성 평가를 potentiostat를 사용하지 않고 간단히 로더(Electronic loader)를 사용해 전극을 가속 열화시키는 방법을 개발하고자 하였다. 이를 위해, cathode에 질소를 유입하지 않고 산소를 유입해 자체 발생 전압을 활용해서 계단식 전압변화를 반복해 전극의 내구성을 평가하였다. 정확한 전극 내구평가를 위해 즉 고분자 막이 열화되지 않게 하기 위해 계단식 전압변화에서 고전압은 0.9 V로 낮게하고, 상대습도를 100%하여 라디칼에 의한 고분자 막 열화를 억제하고자 하였다. 전압변화 30,000 cycle (50시간) 만에 전극활성면적이 41.4% 감소했다. 전극은 열화되지만 고분자 막이 열화되지 않음을 수소투과도 증가가 없고 막 두께감소 없으면서 HFR (High Frequency Resistance) 증가 없는 것으로 확인했다.

Keywords

References

  1. Wang, G., Yu, Y., Liu, H., Gong, C., Wen, S., Wang, X. and Tu, Z., "Progress on Design and Development of Polymer Electrolyte Membrane Fuel Cell Systems for Vehicle Applications: A Review," Fuel Processing Technology, 179, 203-228(2018). https://doi.org/10.1016/j.fuproc.2018.06.013
  2. Department of Energy, https://wwwenergygov/, (2016).
  3. New Energy and Industrial Technology Development Organization, http://wwwnedogojp/english/indexhtml, (2016).
  4. Hydrogen and Fuel Cell Technology Platform in the European Union, www.HFPeurope.org, (2016).
  5. Ministry of Science and Technology of the People's Republic of China, http://wwwmostgovcn/eng, (2016).
  6. Wilkinson, D. P. and St-Pierre, J., in: W. Vielstich, H. A. Gasteiger, A. Lamm (Eds.). Handbook of Fuel Cell: Fundamentals Technology and Applications, Vol. 3, John Wiley & Sons Ltd., Chichester, England, 611-612(2003).
  7. Wilson, M. S., Garzon, F. H., Sickafus, K. E. and Gottesfeld, S., "Surface Area Loss of Supported Platinum in Polymer Electrolyte Fuel Cells," J. Electrochem. Soc., 140(12), 2872-2877(1993). https://doi.org/10.1149/1.2220925
  8. Knights, S. D., Colbow, K. M., St-Pierre, J. and Wilkinson, D. P., "Aging Mechanism and lifetime of PEFC and DMFC," J. Power Sources, 127(1-2), 127-134(2004). https://doi.org/10.1016/j.jpowsour.2003.09.033
  9. Luo, Z., Li, D., Tang, H., Pan, M. and Ruan, R., "Degradation Behavior of Membrane-electrode-assembly Materials in 10-cell PEMFC Stack," Int. J. Hydrog. Energy, 31(13), 1838-1854(2006). https://doi.org/10.1016/j.ijhydene.2006.05.006
  10. Pozio, A., Silva R. F., Francesco, M. D. and Giorgi, L., "Nafion Degradation in PEFCs from End Plate Iron Contamination," Electrochim. Acta, 48(11), 1543-1548(2003). https://doi.org/10.1016/S0013-4686(03)00026-4
  11. Xie, J., Wood III, D. L., Wayne, D. N., Zawodinski, T. A., Atanassov, P. and Borup, R. L., "Durability of PEFCs at High Humidity Conditions," J. Electrochem. Soc., 152(1), A104-A113(2005). https://doi.org/10.1149/1.1830355
  12. Curtin, D. E., Lousenberg, R. D., Henry, T, J., Tangeman, P. C. and Tisack, M. E., "Advanced Materials of Improved PEMFC Performance And Life," J. Power Sources, 131(1-2), 41-48(2004). https://doi.org/10.1016/j.jpowsour.2004.01.023
  13. Watanabe, M., Tsurumi, K., Mizukami,T., Nakamura, T. and Stonehart, P., "Activity and Stability of Ordered and Disordered Co-Pt Alloys for Phosphoric Acid Fuel Cells," J. Electrochem. Soc., 141(10), 2659-2668(1994). https://doi.org/10.1149/1.2059162
  14. Akita, T., Taniguchi, A., Maekawa, J., Siroma, Z., Tanaka, K., Kohyama, M. and Yasuda, K., "Analytical TEM Study of Pt Particle Deposition in the Proton-exchange Membrane of a Membraneelectrode-Assembly," J. Power Sources, 159(1), 461-467(2006). https://doi.org/10.1016/j.jpowsour.2005.10.111
  15. Zhai, Y., Zhang, H., Xing, D. and Shao, Z., "The Stability of Pt/C Catalyst in H3PO4/PBI PEMFC During High Temperature Life Test," J. Power Sources, 164(1), 126-133(2006). https://doi.org/10.1016/j.jpowsour.2006.09.069
  16. U.S. Department of Energy and U.S. DRIVE Fuel Cell Technical Team, "Protocols for Testing PEM Fuel Cells and Fuel Cell Components," Multi-Year Research, Development and Demonstration Plan, 2016 Fuel Cell Section.
  17. Daido University, Ritsumeikian Univ., Tokyo Institute of Technology, Japan Automobile Research Ins., "Cell Evaluation and Analysis Protocol Guidline," NEDO, Development of PEFC Technologies for Commercial Promotion-PEFC Evaluation Project, January 30(2014).
  18. Lee, H., Kim, T. H., Sim, W. J., Kim, S. H., Ahn, B. K., Lim, T. W. and Park, K. P., "Pinhole Formation in PEMFC Membrane," Korean J. Chem. Eng., 28(2), 487-491(2011). https://doi.org/10.1007/s11814-010-0381-6
  19. Song, J. H, Jeong, J. J., Jeong, J. H., Kim, S. H., Ahn, B. K., Ko, J. J. and Park, K. P., "Effect of Membrane Degradation on the Electrode Degradation in PEMFC," Korean Chem. Eng. Res., 51(3), 325-329(2013). https://doi.org/10.9713/kcer.2013.51.3.325
  20. Song, J. H, Kim, S. H., Ahn, B. K., Ko, J. J. and Park, K. P., "Effect of Electrode Degradation on the Membrane Degradation in PEMFC," Korean Chem. Eng. Res., 51(1), 68-72(2013). https://doi.org/10.9713/kcer.2013.51.1.68