Neuroprotective Effect of Scopoletin from Angelica dahurica on Oxygen and Glucose Deprivation-exposed Rat Organotypic Hippocampal Slice Culture

  • Son, Dong-Wook (KT&G Central Research Institute) ;
  • Lee, Pyeong-Jae (Department of Natural Medicine Resources, Semyung University) ;
  • Lee, Jong-Seok (Department of Anesthesiology and Critical Care Medicines, School of Medicine, Johns Hopkins University) ;
  • Lee, Sang-Hyun (Department of Applied Plant Science, College of Industrial Science, Chung-Ang University) ;
  • Choi, Sang-Yoon (Korea Food Research Institute) ;
  • Lee, Jong-Won (KT&G Central Research Institute) ;
  • Kim, Sun-Yeou (Department of Herbal Pharmacology, Graduate School of East-West Medical Science, Kyung Hee University)
  • Published : 2007.08.31

Abstract

This study examined the neuroprotective effect of scopoletin from Angelica dahurica against oxygen and glucose deprivation-induced neurotoxicity in a rat organotypic hippocampal slice culture. Scopoletin reduced the propidium iodide (PI) uptake, which is an indication of impaired cell membrane integrity. In addition, it inhibited the loss of NeuN, which represents the viability of neuronal cells. The results suggests that scopoletin from A. dahurica protects neuronal cells from the damage caused by oxygen and glucose deprivation.

Keywords

References

  1. Haddad GG, Jiang C. $O_2$ Deprivation in the central nervous system: on mechanisms of neuronal response, differential sensitivity, and injury. Prog. Neurobiol. 40: 277-318 (1993) https://doi.org/10.1016/0301-0082(93)90014-J
  2. Kang SY, Sung SH, Park JH, Kim YC. Hepatoprotective activity of scopoletin, a constituent of Solanum lyratum. Arch. Pharm. Res. 21: 718-722 (1998) https://doi.org/10.1007/BF02976764
  3. Kang TH, Pae HO, Jeong SJ, Yoo JC, Choi BM, Jun CD, Chung HT, Miyamoto T, Higuchi R, Kim YC. Scopoletin: an inducible nitric oxide synthesis inhibitory active constituent from Artemisia feddei. Planta Med. 65: 400-403 (1999) https://doi.org/10.1055/s-1999-14014
  4. Kim NY, Pae HO, Ko YS, Yoo JC, Choi BM, Jun CD, Chung HT, Inagaki M, Higuchi R, Kim YC. In vitro inducible nitric oxide synthesis inhibitory active constituents from Fraxinus rhynchophylla. Planta Med. 65: 656-658 (1999) https://doi.org/10.1055/s-2006-960840
  5. Kwon YS, Shin SJ, Kim MJ, Kim CM. A new coumarin from the stem of Angelica dahurica. Arch. Pharm. Res. 25: 53-56 (2002) https://doi.org/10.1007/BF02975261
  6. Muschietti L, Gorzalczany S, Ferraro G, Acevedo C, Martino V. Phenolic compounds with anti-inflammatory activity from Eupatorium buniifolium. Planta Med. 67: 743-744 (2001) https://doi.org/10.1055/s-2001-18355
  7. Noraberg J, Kristensen BW, Zimmer J. Markers for neuronal degeneration in organotypic slice cultures. Brain Res. Protoc. 3: 278-299 (1999) https://doi.org/10.1016/S1385-299X(98)00050-6
  8. Frotscher M, Zafirow S, Heimrich B. Development of identified neuronal types and of specific synaptic connections in slice cultures of rat hippocampus. Prog. Neurobiol. 45: 7-28 (1995)
  9. Gahwiler BH, Capogna M, Debanne D, Mckinney RA, Thompson SM. Organotypic slice cultures: a technique has come of age. Trends Neurosci. 20: 471-477 (1997) https://doi.org/10.1016/S0166-2236(97)01122-3
  10. Arai K, Nishiyama N, Matsuki N, Ikegaya Y. Neuroprotective effects of lipoxygenase inhibitors against ischemic injury in rat hippocampal slice cultures. Brian Res. 904: 167-172 (2001) https://doi.org/10.1016/S0006-8993(01)02491-X
  11. Pringle AK, Iannotti F, Sundstrom LE. Neuroprotection by both NMDA and non-NMDA receptor antagonists in in vitro ischemia. Brain Res. 755: 36-46 (1997) https://doi.org/10.1016/S0006-8993(97)00089-9
  12. Vitale M, Zamai L, Mazzotti G, Cataldi A, Falcieri E. Differential kinetics of propidium iodide uptake in apoptotic and necrotic thymocytes. Histochemistry 100: 223-229 (1993) https://doi.org/10.1007/BF00269095
  13. Nishizawa Y. Glutamate release and neuronal damage in ischemia. Life Sci. 69: 369-381 (2001) https://doi.org/10.1016/S0024-3205(01)01142-0
  14. Bickler PE, Hansen BM. Causes of calcium accumulation in rat cortical brain slices during hypoxia and ischemia: role of ion channels and membrane damage. Brain Res. 665: 269-276 (1994) https://doi.org/10.1016/0006-8993(94)91347-1
  15. Facchinetti F, Dawson VL, Dawson TM. Free radicals as mediators of neuronal injury. Cell. Mol. Neurobiol. 18: 667-682 (1998) https://doi.org/10.1023/A:1020221919154
  16. Park KJ, Ha H-C, Kim H-S, Chiba K, Yeo I-K, Lee S-Y. The neuroprotective and neurotrophic effects of Korean gardenia (Gardenia jasminoides Ellis) in PC12h cells. Food Sci. Biotechnol. 15: 735-738 (2006)
  17. Iadecola C. Bright and dark sides of nitric oxide in ischemic brain injury. Trends Neurosci. 20: 132-139 (1997) https://doi.org/10.1016/S0166-2236(96)10074-6
  18. Gilgun-Sherki Y, Melamed E, Offen D. Oxidative stress inducedneurodegenerative diseases: the need for antioxidants that penetrate the blood brain barrier. Neuropharmacology 40: 959-975 (2001) https://doi.org/10.1016/S0028-3908(01)00019-3
  19. Yrjanheikki J, Tikka T, Keinanen R, Goldsteins G, Chan PH, Koistinaho J. A tetracycline derivative, minocycline, reduces inflammation, and protects against focal cerebral ischemia with a wide therapeutic window. P. Natl. Acad. Sci. USA 96: 13496-13500 (1999) https://doi.org/10.1073/pnas.96.23.13496
  20. Toda S. Inhibitory effects of phenylpropanoid metabolites on copper-induced protein oxidative modification of mice brain homogenate in vitro. Biol. Trace Elem. Res. 85: 183-188 (2002) https://doi.org/10.1385/BTER:85:2:183
  21. Rollinger JM, Hornick A, Langer T, Stuppner H, Prast H. Acetylcholinesterase inhibitory activity of scopolin and scopoletin discovered by virtual screening of natural products. J. Med. Chem. 47: 6248-6254 (2004) https://doi.org/10.1021/jm049655r