• Title/Summary/Keyword: Oxygen Reduction Reaction

Search Result 343, Processing Time 0.033 seconds

Oxygen reduction reaction and electrochemical properties of transition metal doped (Pr,Ba)Co2O5+𝛿

  • Kanghee Jo;Heesoo Lee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.1
    • /
    • pp.37-44
    • /
    • 2023
  • Transition metal (Me = Cu, Fe, Ni) doped (Pr, Ba)Co2O5+𝛿 (PBCO) material were investigated in terms of electronic structure change and electrochemical properties. It was confirmed that (Pr, Ba)(Co, Cu)O5+𝛿 (PBCCu) and (Pr, Ba)(Co, Fe)O5+𝛿 (PBCFe) showed cubic and orthorhombic structures, respectively, but (Pr, Ba)(Co, Ni)O5+𝛿 (PBCNi) showed secondary phases. PBCCu has an average particle diameter of 1093 nm, and PBCO and PBCFe have an average particle diameter of 495.1 nm and 728 nm, respectively. The average oxidation values of B site ions in PBCMe were calculated to be 3.26 (PBCO), 2.48 (PBCCu), 3.32 (PBCFe), and valence band maximum (VBM) was -0.42 eV (PBCO), -0.58 eV (PBCCu), -0.11 eV (PBCFe). It is expected that PBCCu easily interacts with adsorbed oxygen due to the lowest oxidation value and the highest VBM. The polarization resistance was 0.91 Ω cm2 (PBCO), 0.77 Ω cm2 (PBCCu), 1.06 Ω cm2 (PBCFe) at 600℃, showing the lowest polarization resistance of PBCCu.

Corrosion Behavior of Stainless Steel 316 for Carbon Anode Oxide Reduction Application

  • Jeon, Min Ku;Kim, Sung-Wook;Choi, Eun-Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.2
    • /
    • pp.169-177
    • /
    • 2020
  • Here, the stability of stainless steel 316 (SS-316) was investigated to identify its applicability in the oxide reduction process, as a component in related equipment, to produce a complicated gas mixture composed of O2 and Cl2 under an argon (Ar) atmosphere. The effects of the mixed gas composition were investigated at flow rates of 30 mL/min O2, 20 mL/min O2 + 10 mL/min Cl2, 10 mL/min O2 + 20 mL/min Cl2, and 30 mL/min Cl2, each at 600℃, during a constant argon flow rate of 170 mL/min. It was found that the corrosion of SS-316 by the chlorine gas was suppressed by the presence of oxygen, while the reaction proceeded linearly with the reaction time regardless of gas composition. Surface observation results revealed an uneven surface with circular pits in the samples that were fed mixed gases. Thermodynamic calculations proposed the combination of Fe and Ni chlorination reactions as an explanation for this pit formation phenomenon. An exponential increase in the corrosion rate was observed with an increase in the reaction temperature in a range of 300 ~ 600℃ under a flow of 30 mL/min Cl2 + 170 mL/min Ar.

The Electrocatalytic Reduction of Molecular Oxygen with a Co(Ⅱ)-Glyoxal Bis(2-hydroxyanil) Complex Coated Electrode

  • 정의덕;원미숙;심윤보
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.4
    • /
    • pp.417-422
    • /
    • 1998
  • The electrocatalytic reduction of molecular oxygen was investigated with a Co(II)-glyoxal bis(2-hydroxyanil) complex coated-glassy carbon (GC) electrode in aqueous media. The reduction of $O_2$ at the modified electrode was an irreversible and diffusion-controlled reaction. The complex coated-GC electrode demonstrated an excellent electrocatalytic effect for $O_2$ reduction in an acetate buffer solution of pH 3.2. The coated electrode made the $O_2$ reduction potential shift of 60-510 mV in a positive direction compared to the bare GC electrode depending on pH. The Co(II)-glyoxal bis(2-hydroxyanil) coated electrode converted about 51% of the $O_2$ to $H_2O_2$ via a two-electron reduction pathway, with the balance converted to H_2O$.

The Effects of Environmental Conditions on the Reduction Rate of TNT by $Fe^0$ (환경요인이 $Fe^0$ 에 의한 TNT의 환원 반응속도에 미치는 영향)

  • 배범한
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.05a
    • /
    • pp.52-55
    • /
    • 2000
  • The effects of environmental conditions, initial dissolved oxygen concentrations, pH, and the presence of electron carrier vitamin B$_{12}$ , on the reduction rate of TNT by Fe$^{0}$ was Quantitatively analyzed using a batch reactor. In all experiments, TNT reduction was best described with a first order reaction and the reduction rate decreased with the increase in the initial DO concentration. However, the specific reaction rate did not decrease linearly with the increase in the initial DO concentration. In the presence of HEPES buffer 0.2 and 2.0 mM(pH 5.7$\pm$0.2), the specific reaction rate increased more than 5.8 times, which showed reduction rate is rather significantly influenced by the pH of the solution. To test the possibility of reaction rate enhancement, well-known electron carrier(or mediator), vitamin B$_{12}$ has augmented besides Fe$^{0}$ . In the presence of 8.0 $\mu\textrm{g}$/L of vitamin B$_{12}$ , the specific reaction rate increased as much as 14.6 times. The results indicate that the addition of trace amount of vitamin B$_{12}$ can be a promising rate controlling option for the removal of organics using a Fe$^{0}$ filled permeable reactive barrier.

  • PDF

Development of promotors for fast redox reaction of MgMnO3 oxygen carrier material in chemical looping combustion

  • Hwang, Jong Ha;Lee, Ki-Tae
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.5
    • /
    • pp.372-377
    • /
    • 2018
  • MgO or gadolinium-doped ceria (GDC, $Ce_{0.9}Gd_{0.1}O_{2-{\delta}}$) was added as a promoter to improve the oxygen transfer kinetics of $MgMnO_3$ oxygen carrier material for chemical looping combustion. Neither MgO nor GDC reacted with $MgMnO_3$, even at the high temperature of $1100^{\circ}C$. The average oxygen transfer capacities of $MgMnO_3$, 5 wt% $MgO-MgMnO_3$, and 5 wt% $GDC-MgMnO_3$ were 8.74, 8.35, and 8.13 wt%, respectively. Although the addition of MgO or GDC decreased the oxygen transfer capacity, no further degradation was observed during their use in 5 redox cycles. The addition of GDC significantly improved the conversion rate for the reduction reaction of $MgMnO_3$ compared to the use of MgO due to an increase in the surface adsorption process of $CH_4$ via oxygen vacancies formed on the surface of GDC. On the other hand, the conversion rates for the oxidation reaction followed the order 5 wt% $GDC-MgMnO_3$ > 5 wt% $MgO-MgMnO_3$ >> $MgMnO_3$ due to morphological change. MgO or GDC particles suppressed the grain growth of the reduced $MgMnO_3$ (i.e., (Mg,Mn)O) and increased the specific surface area, thereby increasing the number of active reaction sites.

Effect of Gas Diffusion Layer on La0.8Sr0.2CoO3 Bifunctional Electrode for Oxygen Reduction and Evolution Reactions in an Alkaline Solution (알칼리용액에서 산소환원 및 발생반응에 대한 La0.8Sr0.2CoO3 전극의 기체확산층 영향)

  • LOPEZ, KAREEN J.;YANG, JIN-HYUN;SUN, HO-JUNG;PARK, GYUNGSE;EOM, SEUNGWOOK;RIM, HYUNG-RYUL;LEE, HONG-KI;SHIM, JOONGPYO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.6
    • /
    • pp.677-684
    • /
    • 2016
  • Various commercially available gas diffusion layers (GDLs) from different manufacturers were used to prepare an air electrode using $La_{0.8}Sr_{0.2}CoO_3$ perovskite (LSCP) as the catalyst for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in an alkaline solution. Various GDLs have different physical properties, such as porosity, conductivity, hydrophobicity, etc. The ORR and OER of the resulting cathode were electrochemically evaluated in an alkaline solution. The electrochemical properties of the resulting cathodes were slightly different when compared to the physical properties of GDLs. Pore structure and conductivity of GDLs had a prominent effect and their hydrophobicities had a minor effect on the electrochemical performances of cathodes for ORR and OER.

Effect of Conductive Additives in La0.8Sr0.2MnO3 Perovskite Electrodes for Oxygen Reduction and Evolution in Alkaline Solution (알칼리용액에서 La0.8Sr0.2MnO3 페롭스카이트 촉매의 산소환원 및 발생반응에서 도전재의 영향)

  • SHIM, JOONGPYO;LOPEZ, KAREEN J.;YANG, JIN-HYUN;SUN, HO-JUNG;PARK, GYUNGSE;EOM, SEUNGWOOK;LEE, HONG-KI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.3
    • /
    • pp.276-282
    • /
    • 2016
  • The effects of conductive additives in a $La_{0.8}Sr_{0.2}MnO_3$ perovskite bifunctional electrode for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) were investigated in an alkaline solution. Highly porous carbon black (CB) and Ni powder were added to the bifunctional electrodes as conductive additives. The surface morphologies of electrodes containing CB and Ni were observed by scanning electron microscopy (SEM). The current densities for both ORR and OER were changed by the addition of CB. The conductive additive changed physical properties of bifunctional electrodes such as the sheet conductance, gas permeability and contact angle. It was observed that the air permeability of electrode was most effective to enhance the currents for ORR and OER.

Effects of Aging on Electrocatalytic Activities of Pt and Pd Nanoparticles

  • Dutta, Gorachand;Yang, Haesik
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.27-32
    • /
    • 2016
  • Although the time dependences of the electrocatalytic activities of Pt and Pd nanoparticles during electrochemical operations have been widely studied, the time dependences under nonpolarized conditions have never been investigated in depth. This study reports the changes in the electrocatalytic activities of Pt and Pd nanoparticles with aging in air and in solution. Pt (or Pd) nanoparticle-modified electrodes are obtained by adsorbing citrate-stabilized Pt (or Pd) nanoparticles on amine-modified indium-tin oxide (ITO) electrodes, or by electrodeposition of Pt (or Pd) nanoparticles on ITO electrodes. The electrocatalytic activities of freshly prepared Pt and Pd nanoparticles in the oxygen reduction reaction slowly decrease with aging. The electrocatalytic activities decrease more slowly in solution than in air. An increase in surface contamination may cause electrocatalytic deactivation during aging. The electrocatalytic activities of long-aged Pt (or Pd) nanoparticles are significantly enhanced and recovered by NaBH4 treatment.

Recent Progress in Nanoparticle Synthesis via Liquid Medium Sputtering and its Applications

  • Cha, In Young;Yoo, Sung Jong;Jang, Jong Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.13-26
    • /
    • 2016
  • Nanoparticles (NPs), which have been investigated intensively as electrocatalysts, are usually synthesized by chemical methods that allow precise size and shape control. However, it is difficult to control the components and compositions of alloy NPs. On the other hand, the conventional physical method, sputtering with solid substrates, allows for facile composition control but size control is difficult. Recently, “liquid medium sputtering” has been suggested as an alternative method that is capable of combining the advantages of the chemical and conventional physical methods. In this review, we will discuss NP synthesis via the liquid medium sputtering technique using ionic liquid and low-volatile polymer media. In addition, potential applications of the technique, including the generation of oxygen reduction reaction electrocatalysts, will be discussed.

Effect of Electrochemical Redox Reaction on Growth and Metabolism of Saccharomyces cerevisiae as an Environmental Factor

  • Na, Byung-Kwan;Hwang, Tae-Sik;Lee, Sung-Hun;Ahn, Dae-Hee;Park, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.445-453
    • /
    • 2007
  • The effect of an electrochemically generated oxidation-reduction potential and electric pulse on ethanol production and growth of Saccharomyces cerevisiae ATCC 26603 was experimented and compared with effects of electron mediators (neutral red, benzyl viologen, and thionine), chemical oxidants (hydrogen peroxide and hypochlorite), chemical reductants (sulfite and nitrite), oxygen, and hydrogen. The oxidation (anodic) and reduction (cathodic) potential and electric pulse activated ethanol production and growth, and changed the total soluble protein pattern of the test strain. Neutral red electrochemically reduced activated ethanol production and growth of the test strain, but benzyl viologen and thionine did not. Nitrite inhibited ethanol production but did not influence growth of the test strain. Hydrogen peroxide, hypochlorite, and sulfite did not influence ethanol production and growth of the test strain. Hydrogen and oxygen also did not influence the growth and ethanol production. It shows that the test strain may perceive electrochemically generated oxidation-reduction potential and electric pulse as an environmental factor.