Browse > Article

Effect of Electrochemical Redox Reaction on Growth and Metabolism of Saccharomyces cerevisiae as an Environmental Factor  

Na, Byung-Kwan (Department of Biological Engineering, Seokyeong University)
Hwang, Tae-Sik (Department of Biological Engineering, Seokyeong University)
Lee, Sung-Hun (Department of Biological Engineering, Seokyeong University)
Ahn, Dae-Hee (Department of Environmental Engineering and Biotechnology, Myung Ji University)
Park, Doo-Hyun (Department of Biological Engineering, Seokyeong University)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.3, 2007 , pp. 445-453 More about this Journal
Abstract
The effect of an electrochemically generated oxidation-reduction potential and electric pulse on ethanol production and growth of Saccharomyces cerevisiae ATCC 26603 was experimented and compared with effects of electron mediators (neutral red, benzyl viologen, and thionine), chemical oxidants (hydrogen peroxide and hypochlorite), chemical reductants (sulfite and nitrite), oxygen, and hydrogen. The oxidation (anodic) and reduction (cathodic) potential and electric pulse activated ethanol production and growth, and changed the total soluble protein pattern of the test strain. Neutral red electrochemically reduced activated ethanol production and growth of the test strain, but benzyl viologen and thionine did not. Nitrite inhibited ethanol production but did not influence growth of the test strain. Hydrogen peroxide, hypochlorite, and sulfite did not influence ethanol production and growth of the test strain. Hydrogen and oxygen also did not influence the growth and ethanol production. It shows that the test strain may perceive electrochemically generated oxidation-reduction potential and electric pulse as an environmental factor.
Keywords
Electrochemical redox reaction; electron mediators; electric pulse; oxidation radical; reduction radical; Saccharomyces cerevisiae;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
연도 인용수 순위
1 Crueger, W. and A. Crueger. 1989. Biotechnology: A Textbook of Industrial Microbiology. 2nd Ed. pp. 62. Science Tech Publisher, MA, U.S.A
2 Gregory, E. M. and I. Fridovich. 1973. Oxygen toxicity and the superoxide dismutase. J. Bacteriol. 114: 1193-1197
3 Haucke, V., A. M. Dudley, and T. L. Mason. 1994. Analysis of the sorting signals directing NADH-cytochrome b5 reductase to two locations within yeast mitochondria. Mol. Cell. Biol. 17: 4024-4032
4 McDermid, A. S., A. S. McKee, and P. D. Marsh. 1988. Effect of environmental pH on enzyme activity and growth of Bacteroides ginivalis W50. Infect. Immun. 56: 1096- 1100
5 Otto, K., H. Elwing, and M. Hermansson. 1999. Effect of ionic strength on initial interactions of Escherichia coli with surfaces, studied on-line by a novel quartz crystal microbalance technique. J. Bacteriol. 181: 5210-5218
6 Park, D. H. and J. G. Zeikus. 1999. Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite producion. Appl. Environ. Microbiol. 65: 2912-2917
7 Park, D. H. and J. G. Zeikus. 2002. Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens. Appl. Microbiol. Biotechnol. 59: 58-61   DOI   ScienceOn
8 Patel, K. R., K. J. Mayberry-Carson, and P. F. Smith. 1978. Effect of external environmental factors on the morphology of Spiroplasma citri. J. Bacteriol. 133: 925-931
9 Rao, G. and R. Mutharasan. 1987. Altered electron flow in continous cultures of Clostridium acetobutylicum induced by viologen dyes. Appl. Environ. Microbiol. 53: 1232-1235
10 Hongo, M. and M. Iwahara. 1979. Application of electronenergizing method to L-glutamic acid fermentation. Agric. Biol. Chem. 43: 2075-2081   DOI
11 Bond, D. R. and D. R. Levley. 2005. Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans. Appl. Environ. Microbiol. 71: 2186-2189   DOI   ScienceOn
12 Leagn, C., M. V. Coppi, and D. R. Levley. 2003. OmcB, a ctype polyheme cytochrome, involved in Fe(III)-reduction in Geobacter sulfureducens. J. Bacteriol. 185: 2096-2103   DOI   ScienceOn
13 Rajnicek, A. M., C. D. McCaig, and N. A. Gow. 1994. Electric fields induce curved growth of Enterobacter cloaceae, Escherichia coli, and Bacillus subtilus cells: Implications for mechanisms of galvanotropism and bacterial growth. J. Bacteriol. 176: 720-713
14 Park, S. M., H. S. Kang, D. W. Park, and D. H. Park. 2005. Electrochemical control of metabolic flux of Weissella kimchii sk10: Neutral red immobilized in cytoplasmic membrane as electron channel. J. Microbiol. Biotechnol. 15: 80-85   과학기술학회마을
15 Shin, H. S., M. K. Jain, and J. G. Zeikus. 2001. Evaluation of the electrochemical bioreactor system in biotransformation of $\beta$-tetralone to $\beta$-tetralol. Appl. Microbiol. Biotechnol. 57: 506-510   DOI   ScienceOn
16 Verho, R., J. Londesborough, M. Penttilä, and P. Richard. 2003. Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 69: 5892-5897   DOI   ScienceOn
17 Park, S. M., B. I. Sang, D. W. Park, and D. H. Park. 2005. Electrochemical reduction of xylose to xylitol by whole cells or crude enzyme of Candida peltata. J. Microbiol. 43: 451- 455   과학기술학회마을
18 Tinoco, I. Jr., K. Sauer, and J. C. Wang. 1985. Physical Chemistry: Principles and Applications in Biological Sciences. 2nd Edition. pp. 111-168. Prentice Hall. New York
19 Bulik, D. A., M. Olczak, H. A. Lucero, B. C. Osmond, P. W. Robbins, and C. A. Specht. 2003. Chitin synthesis in Saccharomyces cerevisiae in response to supplementation of growth medium with glucosamine and cell wall stress. Eukaryot. Cell 2: 886-900
20 Dumont, M. E., J. B. Schlichter, T. S. Cardillo, J. K. Hayes, G. Bethlendy, and F. Sherman. 1993. CYC2 incodes a factor involved in mitochondrial import of yeast cytochromes C. Mol. Cell. Biol. 13: 6442-6451   DOI
21 Wouters, P. C., N. Dutreux, J. P. P. M. Smelt, and H. L. M. Lelieveld. 1999. Effects of pulsed electric fields on inactivation kinetics of Listeria innocua. Appl. Environ. Microbiol. 65: 5346-5371
22 Jeon, S. J., I. H. Shin, B. I. Sang, and D. H. Park. 2005. Electrochemical regeneration of FAD by catalytic electrode without electron mediator and biochemical reducing power. J. Microbiol. Biotechnol. 15: 281-286   과학기술학회마을
23 Cho, J. Y. and T. W. Jeffries. 1998. Pichia stipitis genes for alcohol dehydrogenase with fermentative and respiratory functions. Appl. Envir. Microbiol. 64: 1350-1358
24 Jones, R. W., T. A. Gray, and P. B. Garland. 1976. A study of the permeability of the cytoplasmic membrane of Escherichia coli to reduced and oxidized benzyl viologen and methyl viologen cations: Complications in the use of viologens as redox mediators for membrane-bound enzymes. Biochemical Society Transaction, 563rd Meeting, London
25 Lesage, G. and H. Bussey. 2006. Cell wall assembly in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 70: 317-343   DOI   ScienceOn
26 Lloret, J., L. Bolanos, M. M. Lucas, J. M. Peart, N. J. Brewing, I. Bonilla, and R. Rivilla. 1995. Ionic strength and osmotic pressure induce different alterations in the lipopolysaccharide of a Rhizobium meliloti strain. Appl. Environ. Microbiol. 61: 3701-3704
27 Bakker, B. M., C. Bro, P. Kötter, M. A. H. Luttik, J. P. van Dijken, and J. T. Pronk. 2000. The mitochondrial alcohol dehydrogenase Adh3p is involved in a redox shuttle in Saccharomyces cerevisiae. J. Bacteriol. 182: 4730-4737   DOI   ScienceOn
28 Thurston, C. F., H. P. Bennetto, G. M. Delaney, J. R. Mason, S. D. Roller, and J. L. Stirling. 1985. Glucose metabolism in a microbial fuel cell. Stoichiometry of product formation in a thionine-mediated Proteus vulgaris fuel cell and its relation to coulombic yields. J. Gen. Microbiol. 131: 1391-1401
29 Waligora, A.-J., M.-C. Barc, P. Bourlioux, A. Collignon, and T. Karjalainen. 1999. Clostridium difficile cell attachment is modified by environmental factors. Appl. Envir. Microbiol. 65: 4234-4238
30 Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685   DOI   ScienceOn
31 Iren, E. P., H. C. Mastwijk, P. V. Bartels, and E. J. Smid. 2000. Pulsed-electric field treatment enhances the bactericidal action of nisin against Bacillus cereus. Appl. Environ. Microbiol. 69: 2405-2408   DOI   ScienceOn
32 Fey, A. and R. Conrad. 2000. Effect of temperature on carbon and electron flow and on the archaeal community in methanogenic rice field soil. Appl. Environ. Microbiol. 66: 4790-4797   DOI   ScienceOn
33 Roller, S. D., H. P. Bennetto, G. M. Delaney, J. R. Mason, J. L. Stirling, and C. F. Thurston. 1984. Electron-transfer coupling in microbial fuel cells: 1. Comparison of redoxmediator reduction rates and respiratory rates of bacteria. J. Chem. Tech. Biotechnol. 34B: 3-12
34 Luo, Q., H. Wang, X. Zhang, and Y. Qian. 2005. Effect of direct electric current on the cell surface properties of phenol-degrading bacteria. Appl. Environ. Microbiol. 71: 423-427   DOI   ScienceOn
35 Fultz, M. L. and R. A. Durst. 1982. Mediator compounds for the electrochemical study of biological redox system: A compilation. Anal. Chim. Acta 140: 1-18   DOI   ScienceOn
36 Na, B. K., B. I. Sang, D. W. Park, and D. H. Park. 2005. Influence of electric potential on structure and function of biofilm in wastewater treatment reactor: Bacterial oxidation of organic carbons coupled to bacterial denitrification. J. Microbiol. Biotechnol. 15: 1221-1228   과학기술학회마을
37 Nagodawithana, T. W., C. Castellano, and K. H. Steinkraus. 1974. Effect of dissolved oxygen, temperature, initial cell count, and sugar concentration on the viability of Saccharomyces cerevisiae in rapid fermentations. Appl. Environ. Microbiol. 28: 383-391
38 Dombek, K. M. and L. O. Ingram. 1987. Ethanol production during batch fermentation with Saccharomyces cerevisiae: Changes in glycolytic enzymes and internal pH. Appl. Envir. Microbiol. 53: 1286-1291
39 Madsen, E. L., A. J. Francis, and J. M. Bollag. 1988. Environmental factors affecting indole metabolism under anaerobic conditions. Appl. Envir. Microbiol. 54: 74-78
40 Park, D. H. and J. G. Zeikus. 1999. Utilization of electrically reduced neutral red by Actinobacillus succinogenes: Physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J. Bacteriol. 181: 2403-2410
41 Stoodley, P., D. deBeer, and H. M. Pappin-Scott. 1997. Influcnce of electric fields and pH on biofilm structure as related to the bioelectric effect. Antimicrob. Agents Chemother. 41: 1876-1879
42 Carlsson, J., G. Nyberg, and J. Wrethen. 1978. Hydrogen peroxide and superoxide radical formation in anaerobic broth media exposed to atmospheric oxygen. Appl. Environ. Microbiol. 36: 223-229
43 Gombert, A. K., M. M. dos Santos, B. Christensen, and J. Nielsen. Network identification and flux quantification in the central metabolism of Saccharomyces cerevisiae under different conditions of glucose repression. J. Bacteriol. 183: 1441-1451   DOI   ScienceOn
44 Park, D. H. and J. G. Zeikus. 2003. Improved fuel cell and electrode designs for production of electricity from microbial degradation. Biotechnol. Bioengin. 81: 348-355   DOI   ScienceOn