DOI QR코드

DOI QR Code

Effect of Gas Diffusion Layer on La0.8Sr0.2CoO3 Bifunctional Electrode for Oxygen Reduction and Evolution Reactions in an Alkaline Solution

알칼리용액에서 산소환원 및 발생반응에 대한 La0.8Sr0.2CoO3 전극의 기체확산층 영향

  • LOPEZ, KAREEN J. (Department of Nano & Chemical Engineering, Kunsan National University) ;
  • YANG, JIN-HYUN (Department of Nano & Chemical Engineering, Kunsan National University) ;
  • SUN, HO-JUNG (Department of Material Science & Engineering, Kunsan National University) ;
  • PARK, GYUNGSE (Department of Chemistry, Kunsan National University) ;
  • EOM, SEUNGWOOK (Battery Research Center Korea Electrotechnology Research Institute) ;
  • RIM, HYUNG-RYUL (Fuel Cell Regional Innovation Center, Woosuk University) ;
  • LEE, HONG-KI (Fuel Cell Regional Innovation Center, Woosuk University) ;
  • SHIM, JOONGPYO (Department of Nano & Chemical Engineering, Kunsan National University)
  • 로페즈 카린 (군산대학교 나노화학공학과) ;
  • 양진현 (군산대학교 나노화학공학과) ;
  • 선호정 (군산대학교 신소재공학과) ;
  • 박경세 (군산대학교 화학과) ;
  • 엄승욱 (한국전기연구원 전지연구센터) ;
  • 임형렬 (우석대학교 수소연료전지 지역혁신센터) ;
  • 이홍기 (우석대학교 수소연료전지 지역혁신센터) ;
  • 심중표 (군산대학교 나노화학공학과)
  • Received : 2016.10.19
  • Accepted : 2016.12.30
  • Published : 2016.12.30

Abstract

Various commercially available gas diffusion layers (GDLs) from different manufacturers were used to prepare an air electrode using $La_{0.8}Sr_{0.2}CoO_3$ perovskite (LSCP) as the catalyst for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in an alkaline solution. Various GDLs have different physical properties, such as porosity, conductivity, hydrophobicity, etc. The ORR and OER of the resulting cathode were electrochemically evaluated in an alkaline solution. The electrochemical properties of the resulting cathodes were slightly different when compared to the physical properties of GDLs. Pore structure and conductivity of GDLs had a prominent effect and their hydrophobicities had a minor effect on the electrochemical performances of cathodes for ORR and OER.

Keywords

References

  1. M. Li, L. Zhang, Q. Xu, J. Niu, Z. Xia, "N-doped graphene as catalysts for oxygen reduction and oxygen evolution reactions: Theoretical considerations", J. Catalysis, Vol. 314, 2014, p.66. https://doi.org/10.1016/j.jcat.2014.03.011
  2. J. Lee, B. Jeong, J.D. Ocon, "Oxygen electrocatalysis in chemical energy conversion and storage technologies", Curr. Appl. Phys., Vol. 13, 2013, p. 309. https://doi.org/10.1016/j.cap.2012.08.008
  3. C.A.C. Sequeira, D.M.F. Santos, W.Baptista, "Oxygen reduction at a manganate electrocatalyst in KOH solutions", J. Braz. Chem. Soc., Vol. 17, 2006, p.910. https://doi.org/10.1590/S0103-50532006000500014
  4. X. Li, W. Qu., J. Zhang, H. Wang, "Electrocatalytic Activities of Perovskite toward Oxygen Reduction Reaction in Concentrated Alkaline Electrolytes", ECS Transactions, Vol. 28, 2010, p. 45.
  5. H.W. Park, D.U. Lee, P. Zamani, M.H. Seo, L.F. Nazar, Z. Chen, "Electrospun porous nanorod perovskite oxide/nitrogen-doped graphene composite as a bi-functional catalyst for metal air batteries", Nano Energy, Vol. 10, 2014, p. 192. https://doi.org/10.1016/j.nanoen.2014.09.009
  6. X. An, D. Shin, J.D. Ocon, J.K. Lee, Y. Son, J. Lee, "Electrocatalytic oxygen evolution reaction at a FeNi composite on a carbon nanofiber matrix in alkaline media", Chinese J. Catalysis, Vol. 35, 2014, p. 891. https://doi.org/10.1016/S1872-2067(14)60127-3
  7. D. Zhang, Y. Song, Z. Du, L. Wang, Y. Li, J.B. Goodenough, "Active $LaNi_{1-x}Fe_xO_3$ bifunctional catalysts for air cathodes in alkaline media", J. Mater. Chem. A, Vol. 3, 2015, p. 9421. https://doi.org/10.1039/C5TA01005E
  8. V. Caramia, B. Bozzini, "Materials science aspects of zinc-air batteries: a review", Mater Renew Sustain Energy, Vol. 3, 2014, p. 28. https://doi.org/10.1007/s40243-014-0028-3
  9. S.H. Lee, Y. Jeong, S. Lim, E. Lee, C. Yi, K. Kim, "The Stable Rechargeability of Secondary Zn-Air Batteries: Is It Possible to Recharge a Zn-Air Battery?", J. Kor. Electrochem. Soc., Vol. 13, 2010, p. 45. https://doi.org/10.5229/JKES.2010.13.1.045
  10. X. Wang, P.J. Sebastian, M.A. Smit, H. Yang, S.A. Gamboa, "Studies on the oxygen reduction catalyst for zinc-air battery electrode", J. Power Sources, Vol. 124, 2003, p. 278. https://doi.org/10.1016/S0378-7753(03)00737-7
  11. R.D. McKerracher, C. Alegre, V. Baglio, A.S. Arico, C. P. de Leon, F. Mornaghini, M. Rodlert, F.C. Walsh, "A nanostructured bifunctional Pd/C gas-diffusion electrode for metal-air batteries", Electrochim. Acta, Vol. 174, 2015, p. 508. https://doi.org/10.1016/j.electacta.2015.06.001
  12. N. Parikh, J.S. Allen, R.S. Yassar, "Microstructure of Gas Diffusion Layers for PEM Fuel Cells", Fuel Cells, Vol. 12, 2012, p. 382. https://doi.org/10.1002/fuce.201100014
  13. E. Sengul, S. Erkan, I. Eroglu, N. Bac, "Effect of Gas Diffusion Layer Characteristics and Addition of Pore-Forming Agents on the Performance of Polymer Electrolyte Membrane Fuel Cells", Chem. Eng. Comm., Vol. 196, 2008, p. 161. https://doi.org/10.1080/00986440802293130
  14. T. Wang, M. Kaempgen, P. Nopphawan, G. Wee, S. Mhaisalkar, M. Srinivasan, "Silver nanoparticledecorated carbon nanotubes as bifunctional gasdiffusion electrodes for zinc-air batteries", J. Power Sources, Vol. 195, 2010, p. 4350. https://doi.org/10.1016/j.jpowsour.2009.12.137
  15. T. Kim, T. Xie, W. Jung, F. Gadala-Maria, P. Ganesan, B.N. Popov, "Development of catalytically active and highly stable catalyst supports for polymer electrolyte membrane fuel cells", J. Power Sources, Vol. 273, 2015, p. 761. https://doi.org/10.1016/j.jpowsour.2014.09.142
  16. M.J. Martinez-Rodriguez, T. Cui, S. Shimpalee, S. Seraphin, B. Duong, J.W. Van Zee, "Effect of microporous layer on MacMullin number of carbon paper gas diffusion layer", J. Power Sources, Vol. 207, 2012, p. 91. https://doi.org/10.1016/j.jpowsour.2012.01.132
  17. J. Lee, I. Kim, Y. Zhang, H. Lee, J. Shim, "Comparison of Cell Performance with Physical Properties of Gas Diffusion Layers in PEMFCs", J. Kor. Electrochem. Soc., Vol. 10, 2007, p. 270. https://doi.org/10.5229/JKES.2007.10.4.270
  18. C. Lim, C.Y. Wang, "Effects of hydrophobic polymer content in GDL on power performance of a PEM fuel cell", Electrochim. Acta, Vol. 49, 2004, p. 4149. https://doi.org/10.1016/j.electacta.2004.04.009
  19. A. El-karouf, T.J. Mason, D.J.L Brett, B.G. Pollet, "Ex-situ characterisation of gas diffusion layers for proton exchange membrane fuel cells", J. Power Sources, Vol. 218, 2012, p. 393. https://doi.org/10.1016/j.jpowsour.2012.06.099
  20. A.F. Stalder, G. Kulik, D. Sage, L. Barbieri, P. Hoffmann, "A snake-based approach to accurate determination of both contact points and contact angels", Coll. Surf. A: Physicochem. Eng. Aspects, Vol. 286, 2006, p. 92. https://doi.org/10.1016/j.colsurfa.2006.03.008
  21. Dullien FAL, "Porous Media: Fluid Transport and Pore Structure", Academic Press, New York, 1992.
  22. J. Geertsma, "Estimating the coefficient of inertial resistance in fluid flow through porous media". Soc Pet Eng J, Vol. 10, 1974, p. 445.
  23. J. Shim, C. Han, H.J. Sun, G. Park, "Preparation and Characterization for Carbon Composite Gas Diffusion Layer on Polymer Electrolyte Membrane Fuel Cells". Trans Kor Hydrogen New Energy Soc, Vol. 23, 2012, p. 34. https://doi.org/10.7316/khnes.2012.23.1.034
  24. K. Lopez, G. Park, H.J. Sun, J.C. An, S. Eom, J. Shim, "Electrochemical characterizations of $LaMO_3$ (M = Co, Mn, Fe, and Ni) and partially substituted $LaNi_xM_{1-x}O_3$ (x = 0.25 or 0.5) for oxygen reduction and evolution in alkaline solution", J. Appl. Electrochem., Vol. 45, 2015, p. 313. https://doi.org/10.1007/s10800-015-0798-z
  25. J. Shim, K. J. Lopez, H.-J. Sun, G. Park, J.-C. An, S. Eom, S. Shimpalee, J.W. Weidner, "Preparation and characterization of electrospun $LaCoO_3$ fibers for oxygen reduction and evolution in rechargeable Zn-air batteries", J. Appl. Electrochem., Vol. 45, 2015, p. 1005. https://doi.org/10.1007/s10800-015-0868-2
  26. X.L. Wang, H.M. Zhang, J.L. Zhang, H.F. Xu, Z.Q. Tian, J. Chen, H.X. Zhong, Y.M. Liang, B.L. Yi, "Micro-porous layer with composite carbon black for PEM fuel cells", Electrochim. Acta, Vol. 51, 2006, p. 4909. https://doi.org/10.1016/j.electacta.2006.01.048
  27. X.F. Wu, Y.A. Dzenis, "Droplet on a fiber: geometrical shape and contact angle", Acta Mechanica, Vol. 185, 2006, p. 215. https://doi.org/10.1007/s00707-006-0349-0
  28. G. Selvarani, A. K. Sahu, P. Sridhar, S. Pitchumani, A. K. Shukla, "Effect of diffusion-layer porosity on the performance of polymer electrolyte fuel cells", J. Appl. Electrochem., Vol. 38, 2008, p. 357. https://doi.org/10.1007/s10800-007-9448-4
  29. E.L. Gyenge and J.-F. Drillet, "The Electrochemical Behavior and Catalytic Activity for Oxygen Reduction of $MnO_2$/C Toray Gas Diffusion Electrodes", J. Electrochem. Soc., Vol. 159, 2012, p. F23. https://doi.org/10.1149/2.061202jes
  30. J. Lobato, P. Canizares, M. A. Rodrigo, C. Ruiz-Lopez, J. J. Linares, "Influence of the Teflon loading in the gas diffusion layer of PBI-based PEM fuel cells", J. Appl. Electrochem., Vol. 38, 2008, p. 793. https://doi.org/10.1007/s10800-008-9512-8
  31. M. Prasanna, H.Y. Ha, E.A. Cho, S.-A. Hong, I.-H. Oh, "Influence of cathode gas diffusion media on the performance of the PEMFCs", J. Power Sources, Vol. 131, 2004, p. 147. https://doi.org/10.1016/j.jpowsour.2004.01.030

Cited by

  1. Synthesis of highly porous LaCoO3 catalyst by Nanocasting and its performance for oxygen reduction and evolution reactions in alkaline solution pp.1573-8663, 2018, https://doi.org/10.1007/s10832-018-0165-7