DOI QR코드

DOI QR Code

Oxygen reduction reaction and electrochemical properties of transition metal doped (Pr,Ba)Co2O5+𝛿

  • Kanghee Jo (School of Materials Science and Engineering, Pusan National University) ;
  • Heesoo Lee (School of Materials Science and Engineering, Pusan National University)
  • Received : 2023.01.04
  • Accepted : 2023.02.02
  • Published : 2023.02.28

Abstract

Transition metal (Me = Cu, Fe, Ni) doped (Pr, Ba)Co2O5+𝛿 (PBCO) material were investigated in terms of electronic structure change and electrochemical properties. It was confirmed that (Pr, Ba)(Co, Cu)O5+𝛿 (PBCCu) and (Pr, Ba)(Co, Fe)O5+𝛿 (PBCFe) showed cubic and orthorhombic structures, respectively, but (Pr, Ba)(Co, Ni)O5+𝛿 (PBCNi) showed secondary phases. PBCCu has an average particle diameter of 1093 nm, and PBCO and PBCFe have an average particle diameter of 495.1 nm and 728 nm, respectively. The average oxidation values of B site ions in PBCMe were calculated to be 3.26 (PBCO), 2.48 (PBCCu), 3.32 (PBCFe), and valence band maximum (VBM) was -0.42 eV (PBCO), -0.58 eV (PBCCu), -0.11 eV (PBCFe). It is expected that PBCCu easily interacts with adsorbed oxygen due to the lowest oxidation value and the highest VBM. The polarization resistance was 0.91 Ω cm2 (PBCO), 0.77 Ω cm2 (PBCCu), 1.06 Ω cm2 (PBCFe) at 600℃, showing the lowest polarization resistance of PBCCu.

Keywords

Acknowledgement

This work was supported by a 2-Year Research Grant of Pusan National University.

References

  1. S.P.S. Badwal and K. Foger, "Solid oxide electrolyte fuel cell review", Ceram. Int. 22 (1996) 257.
  2. M.A. Laguna-Bercero, "Recent advances in high temperature electrolysis using solid oxide fuel cells: A review", J. Power Sources 203 (2012) 4.
  3. N.P. Brandon, S. Skinner and B.C. Steele, "Recent advances in materials for fuel cells", Annu. Rev. Mater. Res. 33 (2003) 183.
  4. A.M. Hussain and E.D. Wachsman, "Liquids-to-power using low-temperature solid oxide fuel cells", Energy Technol. 7 (2019) 20.
  5. S.B. Adler, X.Y. Chen and J.R. Wilson, "Mechanisms and rate laws for oxygen exchange on mixed-conducting oxide surfaces", J. Catal. 245 (2007) 91.
  6. C. Lim, A. Jun, H. Jo, K.M. Ok, J. Shin, Y.W. Ju and G. Kim, "Influence of Ca-doping in layered perovskite PrBaCo2O5+𝛿 on the phase transition and cathodic performance of a solid oxide fuel cell", J. Mater. Chem. A 4 (2016) 6479.
  7. Y.F. Sun, Y.Q. Zhang, B. Hua, Y. Behnamian, J. Li, S.H. Cui, J.H. Li and J.L. Luo, "Molybdenum doped Pr0.5Ba0.5MnO3-𝛿 (Mo-PBMO) double perovskite as a potential solid oxide fuel cell anode material", J. Power Sources 301 (2016) 237.
  8. G. Tsekouras, D. Neagu and J.T. Irvine, "Step-change in high temperature steam electrolysis performance of perovskite oxide cathodes with exsolution of B-site dopants", Energy Environ. Sci. 6 (2013) 256.
  9. L. Jiang, T. Wei and Y. Huang, "Double-perovskite electrode design strategies and research progress for SOFCs", J. Electrochem. Soc. 9 (2022) 064508.
  10. Y.H. Joung, H.I. Kang, W.S. Choi and J.H. Kim, "Investigation of X-ray photoelectron spectroscopy and electrical conductivity properties of the layered perovskite LnBaCo2O5+𝛿 (Ln = Pr, Nd, Sm, and Gd) for IT-SOFC", Electron. Mater. Lett. 9 (2013) 463.
  11. R. Strandbakke, "Oxygen electrodes for ceramic fuel cells with proton and oxide ion conducting electrolytes", University of Oslo (2014) 13.
  12. A. Jun, J. Kim, J. Shin and G. Kim, "Perovskite as a cathode material: a review of its role in solid-oxide fuel cell technology", ChemElectroChem 3 (2016) 511.
  13. J. Liu, H. Liu, H. Chen, X. Du, B. Zhang, Z. Hong, S. Sun and W. Wang, "Progress and challenges toward the rational design of oxygen electrocatalysts based on a descriptor approach", Adv. Sci. 7 (2020) 1901614.
  14. A. Grimaud, K.J. May, C.E. Carlton, Y.L. Lee, M. Risch, W.T. Hong, J. Zhou and Y. Shao-Horn, "Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution", Nat. Commun. 4 (2013) 1.
  15. Y.L. Lee, J. Kleis, J. Rossmeisl, Y. Shao-Horn and D. Morgan, "Prediction of solid oxide fuel cell cathode activity with first-principles descriptors", Energy Environ. Sci. 4 (2011) 3966.
  16. Z. Zhu, Y. Shi, C. Aruta and N. Yang, "Improving electronic conductivity and oxygen reduction activity in Srdoped lanthanum cobaltite thin films: cobalt valence state and electronic band structure effects", ACS Appl. Energy Mater. 1 (2018) 5308.
  17. T. Chen, H. Zhao, Z. Xie, L. Feng, X. Lu, W. Ding and F. Li, "Electrical conductivity and oxygen permeability of Ce0.8Sm0.2O2-𝛿-PrBaCo2O5+𝛿 dual-phase composites", Int. J. Hydrogen Energy 37 (2012) 5277.
  18. M. Jana, A. Sil and S. Ray, "Tailoring of surface melting of oxide based catalyst particles by doping to influence the growth of multi-walled carbon nano-structures", Carbon 49 (2011) 5142.
  19. N. Tsvetkov, B.C. Moon, J. Lee an J.K. Kang, "Controlled synthesis of nanocrystalline Nb: SrTiO3 electron transport layers for robust interfaces and stable high photovoltaic energy conversion efficiency in perovskite halide solar cells", ACS Appl. Energy Mater. 3 (2019) 344.
  20. D.S. Bick, J.D. Griesche, T. Schneller, G. Staikov, R. Waser and I. Valov, "PrxBa1-xCoO3 oxide electrodes for oxygen evolution reaction in alkaline solutions by chemical solution deposition", J. Electrochem. Soc. 163 (2015) F166.
  21. H.P. Uppara, J.S. Pasuparthy, S. Pradhan, S.K. Singh, N.K. Labhsetwar and H. Dasari, "The comparative experimental investigations of SrMn (Co3+/Co2+) O3±𝛿 and SrMn (Cu2+) O3±𝛿 perovskites towards soot oxidation activity", Mol. Catal. 482 (2020) 110665.
  22. W. Zhang, M. Shiraiwa, N. Wang, T. Ma, K. Fujii, E. Niwa and M. Yashima, "Pr/Ba cation-disordered perovskite Pr2/3Ba1/3CoO3-𝛿 as a new bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions", J. Ceram. Soc. Jpn. 126 (2018) 814.
  23. T. Ghodselahi, M.A. Vesaghi, A. Shafiekhani, A. Baghizadeh and M. Lameii, "XPS study of the Cu@Cu2O core-shell nanoparticles", Appl. Surf. Sci. 255 (2008) 2730.
  24. A. Mekki, K.A. Ziq, D. Holland and C.F. McConville, "Magnetic properties of praseodymium ions in Na2O-Pr2O3-SiO2 glasses", J. Magn. Magn. Mater. 260 (2003) 60.
  25. S.S. Pramana, A. Cavallaro, C. Li, A.D. Handoko, K.W. Chan, R.J. Walker, A. Regoutz, J.S. Herrin, B.S. Yeo, D.J. Payne, J.A. Kilner, M.P. Ryan and S.J. Skinner, "Crystal structure and surface characteristics of Srdoped GdBaCo2O6-𝛿 double perovskites: oxygen evolution reaction and conductivity", J. Mater. Chem. A 6 (2018) 5335.
  26. C. Lohaus, A. Klein and W. Jaegermann, "Limitation of Fermi level shifts by polaron defect states in hematite photoelectrodes", Nat. Commun. 9 (2018) 1.
  27. E. Alves, H.P. Martins, S. Domenech and M. Abbate, "Band structure and cluster model calculations of LaNiO3 compared to photoemission, O 1s X-ray absorption, and optical absorption spectra", Phys. Lett. A 383 (2019) 2952.
  28. Y. Chen, Y. Chen, D. Ding, Y. Ding, Y. Choi, L. Zhang, S. Yoo, D. Chen, B. deGlee, H. Xu, Q. Lu, B. Zhao, G. Vardar, J. Wang, H. Bluhm, E.J. Crumlin, C. Yang, J. Liu, B. Yildiz and M. Liu, "A robust and active hybrid catalyst for facile oxygen reduction in solid oxide fuel cells", Energy Environ. Sci. 10 (2017) 964.
  29. J.H. Kim and A. Manthiram, "Layered LnBaCo2O5+𝛿 perovskite cathodes for solid oxide fuel cells: an overview and perspective", J. Mater. Chem. A 3 (2015) 24195.
  30. C. Sun, R. Hui and J. Roller, "Cathode materials for solid oxide fuel cells: a review", J. Solid State Electrochem. 14 (2010) 1125.