Browse > Article

Development of promotors for fast redox reaction of MgMnO3 oxygen carrier material in chemical looping combustion  

Hwang, Jong Ha (Department of Mineral Resources & Energy Engineering, Chonbuk National University)
Lee, Ki-Tae (Division of Advanced Materials Engineering, Chonbuk National University)
Publication Information
Abstract
MgO or gadolinium-doped ceria (GDC, $Ce_{0.9}Gd_{0.1}O_{2-{\delta}}$) was added as a promoter to improve the oxygen transfer kinetics of $MgMnO_3$ oxygen carrier material for chemical looping combustion. Neither MgO nor GDC reacted with $MgMnO_3$, even at the high temperature of $1100^{\circ}C$. The average oxygen transfer capacities of $MgMnO_3$, 5 wt% $MgO-MgMnO_3$, and 5 wt% $GDC-MgMnO_3$ were 8.74, 8.35, and 8.13 wt%, respectively. Although the addition of MgO or GDC decreased the oxygen transfer capacity, no further degradation was observed during their use in 5 redox cycles. The addition of GDC significantly improved the conversion rate for the reduction reaction of $MgMnO_3$ compared to the use of MgO due to an increase in the surface adsorption process of $CH_4$ via oxygen vacancies formed on the surface of GDC. On the other hand, the conversion rates for the oxidation reaction followed the order 5 wt% $GDC-MgMnO_3$ > 5 wt% $MgO-MgMnO_3$ >> $MgMnO_3$ due to morphological change. MgO or GDC particles suppressed the grain growth of the reduced $MgMnO_3$ (i.e., (Mg,Mn)O) and increased the specific surface area, thereby increasing the number of active reaction sites.
Keywords
Chemical looping combustion; Oxygen carrier material; Oxygen transfer capacity; Conversion rate; Promoter;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. Yang, H. Zhao, K. Wang, C. Zheng, Proc. Combust. Inst. 35 (2015) 2811-2818.   DOI
2 J.H. Hwang, J.I. Baek, H.J. Ryu, J.M. Sohn, K.T. Lee, Fuel 231 (2018) 290-296.   DOI
3 K. Kim, S. Yang, K. Shin, ACS Omega 3 (2018) 4378-4383.   DOI
4 Y. Tan, N. Duan, A. Wang, D. Yan, B. Chi, N. Wang, J. Pu, J. Li, J. Power Sources 305 (2016) 168-174.   DOI
5 C. Zhang, R. Ran, G. H. Pham, K. Zhang, J. Liu,S. Liu, RSC Adv. 5 (2015) 5379-5386.   DOI
6 X. Huang, X. Wang, M. Fan, Y. Wang, H. Adidharma, K.A.M. Gasem, M. Radosz, Appl. Energy 193 (2017) 381-392.   DOI
7 S. Jiang, L. Shen, J. Wu, J. Yan, T. Song, Chem. Eng. J. 317 (2017) 132-142.   DOI
8 R.T. Yang, K.L. Yang, Carbon 23 (1985) 537-547.   DOI
9 J. Gadsby, F.J. Long, P. Sleightholm, K.W. Sykes, Proc. Roy. Soc. 193 (1948) 357-376.   DOI
10 C. Sun, H. Li, L. Chen, Energy Environ. Sci. 5 (2012) 8475-8505.   DOI
11 A. Cabello, A. Abad, F. Garcia-Labiano, P. Gayan, L.F. de Diego, J. Adanez, Chem. Eng. J. 258 (2014) 265-280.   DOI
12 The Paris Agreement, United Nations 2015.
13 R. Perez-Vega, A. Abad, P. Gayan, L.F. de Diego, F. Garcia-Labiano, J. Adanez, Fuel Process. Technol. 164 (2017) 69-79.   DOI
14 J. Fan, H. Hong, L. Zhu, Q. Jiang, H. Jin, Appl. Energy 195 (2017) 861-876.   DOI
15 I. Adanez-Rubio, A. Perez-Astray, T. Mendiara, M.T. Izquierdo, A. Abad, P. Gayan, L.F. de Diego, F. GarciaLabiano, J. Adanez, Fuel Process. Technol. 172 (2018) 179-186.   DOI
16 H.A. Alalwan, D.M. Cwiertny, V.H. Grassian, Chem. Eng. J. 319 (2017) 279-287.   DOI
17 B.S. Kwak, N.-K. Park, S.O. Ryu, J.-In. Baek, H.-J. Ryu, M. Kang, Chem. Eng. J. 309 (2017) 617-627.   DOI
18 A. Abad, R. Perez-vega, L.F. de Diego, F. Garcialabiano, P. Gayan, J. Adanez, Appl. Energy 157 (2015) 295-303.   DOI
19 A. Nandy, C. Loha, S. Gu, P. Sarkar, M.K. Karmakar, P.K. Chatterjee, Renew. Sustainable Energy Rev. 59 (2016) 597-619.   DOI
20 W.-C. Huang, Y.-L. Kuo, P.-C. Su, Y.-H. Tseng, H.-Y. Lee, Y. Ku, Chem. Eng. J. 334 (2018) 2079-2087.   DOI
21 S.K. Haider, G. Azimi, L. Duan, E.J. Anthony, K. Patchigolla, J.E. Oakey, H. Leion, T. Mattisson, A. Lyngfelt, Appl. Energy 163 (2016) 41-50.   DOI