• Title/Summary/Keyword: Oxide thin films Transistor

Search Result 97, Processing Time 0.026 seconds

Effect of Si grinding on electrical properties of sputtered tin oxide thin films (Si 기판의 연삭 공정이 산화주석 박막의 전기적 성질에 미치는 영향 연구)

  • Cho, Seungbum;Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.2
    • /
    • pp.49-53
    • /
    • 2018
  • Recently, technologies for integrating various devices such as a flexible device, a transparent device, and a MEMS device have been developed. The key processes of heterogeneous device manufacturing technology are chip or wafer-level bonding process, substrate grinding process, and thin substrate handling process. In this study, the effect of Si substrate grinding process on the electrical properties of tin oxide thin films applied as transparent thin film transistor or flexible electrode material was investigated. As the Si substrate thickness became thinner, the Si d-spacing decreased and strains occurred in the Si lattice. Also, as the Si substrate thickness became thinner, the electric conductivity of tin oxide thin film decreased due to the lower carrier concentration. In the case of the thinner tin oxide thin film, the electrical conductivity was lower than that of the thicker tin oxide thin film and did not change much by the thickness of Si substrate.

Solution-Processed Inorganic Thin Film Transistors Fabricated from Butylamine-Capped Indium-Doped Zinc Oxide Nanocrystals

  • Pham, Hien Thu;Jeong, Hyun-Dam
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.494-500
    • /
    • 2014
  • Indium-doped zinc oxide nanocrystals (IZO NCs), capped with stearic acid (SA) of different sizes, were synthesized using a hot injection method in a noncoordinating solvent 1-octadecene (ODE). The ligand exchange process was employed to modify the surface of IZO NCs by replacing the longer-chain ligand of stearic acid with the shorter-chain ligand of butylamine (BA). It should be noted that the ligand-exchange percentage was observed to be 75%. The change of particle size, morphology, and crystal structures were obtained using a field emission scanning electron microscope (FE-SEM) and X-ray diffraction pattern results. In our study, the 5 nm and 10 nm IZO NCs capped with stearic acid (SA-IZO) were ligand-exchanged with butylamine (BA), and were then spin-coated on a thermal oxide ($SiO_2$) gate insulator to fabricate a thin film transistor (TFT) device. The films were then annealed at various temperatures: $350^{\circ}C$, $400^{\circ}C$, $500^{\circ}C$, and $600^{\circ}C$. All samples showed semiconducting behavior and exhibited n-channel TFT. Curing temperature dependent on mobility was observed. Interestingly, mobility decreases with the increasing size of NCs from 5 to 10 nm. Miller-Abrahams hopping formalism was employed to explain the hopping mechanism insight our IZO NC films. By focusing on the effect of size, different curing temperatures, electron coupling, tunneling rate, and inter-NC separation, we found that the decrease in electron mobility for larger NCs was due to smaller electronic coupling.

Optimization of Amorphous Indium Gallium Zinc Oxide Thin Film for Transparent Thin Film Transistor Applications

  • Shin, Han Jae;Lee, Dong Ic;Yeom, Se-Hyuk;Seo, Chang Tae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.352.1-352.1
    • /
    • 2014
  • Indium Tin Oxide (ITO) films are the most extensively studied and commonly used as ones of TCO films. The ITO films having a high electric conductivity and high transparency are easily fabricated on glass substrate at a substrate temperature over $250^{\circ}C$. However, glass substrates are somewhat heavy and brittle, whereas plastic substrates are lightweight, unbreakable, and so on. For these reasons, it has been recently suggested to use plastic substrates for flexible display application instead of glass. Many reaearchers have tried to produce high quality thin films at rood temperatures by using several methods. Therefore, amorphous ITO films excluding thermal process exhibit a decrease in electrical conductivity and optical transparency with time and a very poor chemical stability. However the amorphous Indium Gallium Zinc Oxide (IGZO) offers several advantages. For typical instance, unlike either crystalline or amorphous ITO, same and higher than a-IGZO resistivity is found when no reactive oxygen is added to the sputter chamber, this greatly simplifies the deposition. We reported on the characteristics of a-IGZO thin films were fabricated by RF-magnetron sputtering method on the PEN substrate at room temperature using 3inch sputtering targets different rate of Zn. The homogeneous and stable targets were prepared by calcine and sintering process. Furthermore, two types of IGZO TFT design, a- IGZO source/drain material in TFT and the other a- ITO source/drain material, have been fabricated for comparison with each other. The experimental results reveal that the a- IGZO source/drain electrode in IGZO TFT is shown to be superior TFT performances, compared with a- ITO source/drain electrode in IGZO TFT.

  • PDF

The structural characteristics of ZnO thin films for TFT driver circuit (박막트랜지스터 구동회로용 ZnO 박막의 구조적 특성에 관한 연구)

  • Son, Jihoon;Kim, Sanghyun;Kim, Hongseung;Jang, Nakwon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.72-77
    • /
    • 2013
  • The effect of sputtering condition on the structural properties of ZnO thin films grown by RF magnetron sputtering system was investigated for TFT driver circuit. ZnO thin films were grown with ZnO target varying RF power and working pressure. Structural properties were investigated by X-ray diffraction (XRD) and atomic force microscope (AFM). The ZnO thin films have sufficient crystallinity on the 100W RF power. But, the surface roughness of ZnO films was increased as increased RF power. As increased working pressure from 5 mTorr to 15 mTorr, a full width at half maximum (FWHM) of ZnO (002) peak was increased.

Studies for Improvement in SiO2 Film Property for Thin Film Transistor (박막트랜지스터 응용을 위한 SiO2 박막 특성 연구)

  • Seo, Chang-Ki;Shim, Myung-Suk;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.6
    • /
    • pp.580-585
    • /
    • 2004
  • Silicon dioxide (SiO$_2$) is widely used as a gate dielectric material for thin film transistors (TFT) and semiconductor devices. In this paper, SiO$_2$ films were grown by APCVD(Atmospheric Pressure chemical vapor deposition) at the high temperature. Experimental investigations were carried out as a function of $O_2$ gas flow ratios from 0 to 200 1pm. This article presents the SiO$_2$ gate dielectric studies in terms of deposition rate, refrative index, FT-IR, C-V for the gate dielectric layer of thin film transistor applications. We also study defect passivation technique for improvement interface or surface properties in thin films. Our passivation technique is Forming Gas Annealing treatment. FGA acts passivation of interface and surface impurity or defects in SiO$_2$ film. We used RTP system for FGA and gained results that reduced surface fixed charge and trap density of midgap value.

Non-monotonic Size Dependence of Electron Mobility in Indium Oxide Nanocrystals Thin Film Transistor

  • Pham, Hien Thu;Jeong, Hyun-Dam
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2505-2511
    • /
    • 2014
  • Indium oxide nanocrystals ($In_2O_3$ NCs) with sizes of 5.5 nm-10 nm were synthesized by hot injection of the mixture precursors, indium acetate and oleic acid, into alcohol solution (1-octadecanol and 1-octadecence mixture). Field emission transmission electron microscopy (FE-TEM), High resolution X-Ray diffraction (X-ray), Nuclear magnetic resonance (NMR), and Fourier transform infrared spectroscopy (FT-IR) were employed to investigate the size, surface molecular structure, and crystallinity of the synthesized $In_2O_3$ NCs. When covered by oleic acid as a capping group, the $In_2O_3$ NCs had a high crystallinity with a cubic structure, demonstrating a narrow size distribution. A high mobility of $2.51cm^2/V{\cdot}s$ and an on/off current ratio of about $1.0{\times}10^3$ were observed with an $In_2O_3$ NCs thin film transistor (TFT) device, where the channel layer of $In_2O_3$ NCs thin films were formed by a solution process of spin coating, cured at a relatively low temperature, $350^{\circ}C$. A size-dependent, non-monotonic trend on electron mobility was distinctly observed: the electron mobility increased from $0.43cm^2/V{\cdot}s$ for NCs with a 5.5 nm diameter to $2.51cm^2/V{\cdot}s$ for NCs with a diameter of 7.1 nm, and then decreased for NCs larger than 7.1 nm. This phenomenon is clearly explained by the combination of a smaller number of hops, a decrease in charging energy, and a decrease in electronic coupling with the increasing NC size, where the crossover diameter is estimated to be 7.1 nm. The decrease in electronic coupling proved to be the decisive factor giving rise to the decrease in the mobility associated with increasing size in the larger NCs above the crossover diameter.

Sol-gel deposited TiInO thin-films transistor with Ti effect

  • Kim, Jung-Hye;Son, Dae-Ho;Kim, Dae-Hwan;Kang, Jin-Kyu;Ha, Ki-Ryong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.200-200
    • /
    • 2010
  • In recent times, metal oxide semiconductors thin films transistor (TFT), such as zinc and indium based oxide TFTs, have attracted considerable attention because of their several advantageous electrical and optical properties. There are many deposition methods for fabrication of ZnO-based materials such as chemical vapor deposition, RF/DC sputtering and pulsed laser deposition. However, these vacuum process require expensive equipment and result in high manufacturing costs. Also, the methods is difficult to fabricate various multicomponent oxide semiconductor. Recently, several groups report solution processed metal oxide TFTs for low cost and non vacuum process. In this study, we have newly developed solution-processed TFTs based on Ti-related multi-component transparent oxide, i. e., InTiO as the active layer. We propose new multicomponent oxide, Titanium indium oxide(TiInO), to fabricate the high performance TFT through the sol-gel method. We investigated the influence of relative compositions of Ti on the electrical properties. Indium nitrate hydrate [$In(NO^3).xH_2O$] and Titanium isobutoxide [$C_{16}H_{36}O_4Ti$] were dissolved in acetylacetone. Then monoethanolamine (MEA) and acetic acid ($CH_3COOH$) were added to the solution. The molar concentration of indium was kept as 0.1 mol concentration and the amount of Ti was varied according to weighting percent (0, 5, 10%). The complex solutions become clear and homogeneous after stirring for 24 hours. Heavily boron (p+) doped Si wafer with 100nm thermally grown $SiO_2$ serve as the gate and gate dielectric of the TFT, respectively. TiInO thin films were deposited using the sol-gel solution by the spin-coating method. After coating, the films annealed in a tube furnace at $500^{\circ}C$ for 1hour under oxygen ambient. The 5% Ti-doped InO TFT had a field-effect mobility $1.15cm^2/V{\cdot}S$, a threshold voltage of 4.73 V, an on/off current ratio grater than $10^7$, and a subthreshold slop of 0.49 V/dec. The 10% Ti-doped InO TFT had a field-effect mobility $1.03\;cm^2/V{\cdot}S$, a threshold voltage of 1.87 V, an on/off current ration grater than $10^7$, and a subthreshold slop of 0.67 V/dec.

  • PDF

The Effect of Hafnium Dioxide Nanofilm on the Organic Thin Film Transistor

  • Choi, Woon-Seop;Song, Young-Gi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1315-1318
    • /
    • 2007
  • Hafnium dioxide nano film as gate insulator for organic thin film transistors is prepared by atomic layer deposition. Mostly crystalline of $HfO_2$ films can be obtained with oxygen plasma and with water at relatively low temperature of $150^{\circ}C$. $HfO_2$ was deposited as a uniform rate $1.2A^{\circ}/cycle$. The morphology and performances of OTFT will be discussed.

  • PDF

Role of Hf in amorphous oxide thin film transistors fabricated by rf-magnetron sputtering (스퍼터링 공정으로 제작된 비정질 산화물 박막트랜지스터의 하프늄 금속이온 영향)

  • Chong, Eu-Gene;Chun, Yoon-Soo;Jo, Kyoung-Chol;Kim, Seung-Han;Jung, Da-Woon;Lee, Sang-Yeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.12-12
    • /
    • 2010
  • Time dependence of the shift of the threshold voltage of amorphous hafnium-indium-zinc oxide (a-HIZO) has been reported under on-current stress condition. a-HIZO thin films were deposited on $SiO_2$/Si (100) by rf magnetron sputtering. XPS measurement indicates that the Hf metal cations in a-HIZO system after annealing process reduce oxygen vacancies by binding oxygen. It was found that the Hf metal cation can be effectively incorporated in the IZO thin films as a suppressor against both the oxygen deficiencies and the carrier generation in the ZnO-based system.

  • PDF

Characterization of Solution-Processed Oxide Transistor with Embedded Electron Transport Buffer Layer (전자 수송층을 삽입한 용액 공정형 산화물 트랜지스터의 특성 평가)

  • Kim, Han-Sang;Kim, Sung-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.8
    • /
    • pp.491-495
    • /
    • 2017
  • We investigated solution-processed indium-zinc oxide (IZO) thin-film transistors (TFTs) by inserting a 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD) buffer layer. This buffer layer efficiently tuned the energy level between the semiconducting oxide channel and metal electrode by increasing charge extraction, thereby enhancing the overall device performance: the IZO TFT with embedded PBD layer (thickness: 5 nm; width: $2,000{\mu}m$; length: $200{\mu}m$) exhibited a field-effect mobility of $1.31cm^2V^{-1}s^{-1}$, threshold voltage of 0.12 V, subthreshold swing of $0.87V\;decade^{-1}$, and on/off current ratio of $9.28{\times}10^5$.