Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.8.2505

Non-monotonic Size Dependence of Electron Mobility in Indium Oxide Nanocrystals Thin Film Transistor  

Pham, Hien Thu (Department of Chemistry, Chonnam National University)
Jeong, Hyun-Dam (Department of Chemistry, Chonnam National University)
Publication Information
Abstract
Indium oxide nanocrystals ($In_2O_3$ NCs) with sizes of 5.5 nm-10 nm were synthesized by hot injection of the mixture precursors, indium acetate and oleic acid, into alcohol solution (1-octadecanol and 1-octadecence mixture). Field emission transmission electron microscopy (FE-TEM), High resolution X-Ray diffraction (X-ray), Nuclear magnetic resonance (NMR), and Fourier transform infrared spectroscopy (FT-IR) were employed to investigate the size, surface molecular structure, and crystallinity of the synthesized $In_2O_3$ NCs. When covered by oleic acid as a capping group, the $In_2O_3$ NCs had a high crystallinity with a cubic structure, demonstrating a narrow size distribution. A high mobility of $2.51cm^2/V{\cdot}s$ and an on/off current ratio of about $1.0{\times}10^3$ were observed with an $In_2O_3$ NCs thin film transistor (TFT) device, where the channel layer of $In_2O_3$ NCs thin films were formed by a solution process of spin coating, cured at a relatively low temperature, $350^{\circ}C$. A size-dependent, non-monotonic trend on electron mobility was distinctly observed: the electron mobility increased from $0.43cm^2/V{\cdot}s$ for NCs with a 5.5 nm diameter to $2.51cm^2/V{\cdot}s$ for NCs with a diameter of 7.1 nm, and then decreased for NCs larger than 7.1 nm. This phenomenon is clearly explained by the combination of a smaller number of hops, a decrease in charging energy, and a decrease in electronic coupling with the increasing NC size, where the crossover diameter is estimated to be 7.1 nm. The decrease in electronic coupling proved to be the decisive factor giving rise to the decrease in the mobility associated with increasing size in the larger NCs above the crossover diameter.
Keywords
Indium oxide nanocrystals; Thin film transistor; Electron mobility; Non-monotonic; Electronic coupling;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Liu, Y.; Gibbs, M.; Puthussery, J.; Gaik, S.; Ihly, R.; Hillhouse, H. W.; Matt, L. Nano Lett. 2010, 10, 1960.   DOI   ScienceOn
2 Talapin, D. V.; Murray, C. B. Science 2005, 310, 86.   DOI   ScienceOn
3 Adurodija, F. O.; Izumi, H.; Ishihara, T.; Yoshioka, H.; Matsui, H.; Motoyama, M. Appl. Phys. Lett. 1999, 74, 3059.   DOI   ScienceOn
4 Hanrath, T. J. Vac. Sci. Technol. A 2012, 30, 030820.
5 Beloborodov, I. S.; Lopatin, A. V.; Vinokur, V. M. Rev. Mod. Phys. 2007, 79, 469.   DOI   ScienceOn
6 Talapin, D. V.; Lee, J.-S.; Kovalenko, M. V.; Schevchenko, E. V. Chem. Rev. 2010, 110, 389.   DOI   ScienceOn
7 Narayanaswamy, A.; Xu, H.; Pradhan, N.; Kim, M.-S.; Peng, X. J. Am. Chem. Soc. 2006, 128, 10310.   DOI   ScienceOn
8 Ye, E.; Zhang, S.-H.; Lim, S. H.; Liu, S.; Han, M.-Y. Phys. Chem. Chem. Phys. 2010, 12, 11923.   DOI   ScienceOn
9 Seo, S.-W.; Jo, H.-H.; Lee, K.; Park, T.-J. Adv. Mater. 2003, 15, 795.   DOI   ScienceOn
10 Niederberger, M.; Garnweitner, G. Chem. Eur. J. 2006, 12, 7282.   DOI   ScienceOn
11 Joo, J.; Kwon, S. G.; Yu, J. H.; Hyeon, T. Adv. Mater. 2005, 17, 1873.   DOI   ScienceOn
12 Hong, Z. S.; Cao, Y.; Deng, J. F. Mater. Lett. 2002, 52, 34.   DOI   ScienceOn
13 Han, S.-Y.; Herman, G. S.; Chang, C.-H. J. Am. Chem. Soc, 2011, 133, 5166.   DOI   ScienceOn
14 Chong, E.; Chun, Y.-S.; Kim, S.-H.; Lee, S.-Y. Journal of Electrical Engineering & Techonology 2011, 6, 539.   DOI   ScienceOn
15 Kim, M.-S.; Hwang, Y.-H.; Kim, S.; Guo, Z.; Moon, D.-I.; Choi, J.-M.; Seol, M.-L.; Bae, B.-S.; Choi, Y.-K. Appl. Phys. Lett. 2012, 101, 243503.   DOI   ScienceOn
16 Lee, J.; Choi, O.; Sim, E. J. Phys. Chem. Lett. 2012, 3, 714.   DOI   ScienceOn
17 (b) Gupta, A.; Cao, H.; Parekh; Rao, K. K. V.; Raju, A. R.; Waghmare, U. V. J. Appl. Phys. 2007, 101, 09N513.
18 (b) Trindade, T.; O'Brien, P.; Pickett, N. L. Chem. Mater. 2001, 13, 3843.   DOI   ScienceOn
19 (a) Ginley, D. S.; Bright, C. Mater. Res. Soc. Bull. 2000, 25, 15.
20 (b) Chopra, K. L.; Major, S.; Pandya, D. K. Thin Solid Films 1983, 102, 1.   DOI   ScienceOn
21 (c) Dawar, A. L.; Joshi, J. C. J. Mater. Sci. 1984, 19, 1.   DOI   ScienceOn
22 (a) Wang, L.; Yoon, M.-H.; Facchetti, A.; Marks, T. J. Adv. Mater. 2007, 19, 3252.   DOI   ScienceOn
23 (b) Wang, L.; Yoon, M.-H.; Lu, G.; Yang, Y.; Facchetti, A.; Marks, T. J. Nat. Mater. 2006, 5, 893.   DOI   ScienceOn
24 Kim, H.-S.; Byrne, P.-D.; Facchetti, A.; Marks, T. J. J. Am. Chem. Soc. 2008, 130, 12580.   DOI   ScienceOn
25 Kim, M.-G.; Kanatzidis, M. G.; Facchetti, A.; Marks, T. J. Nature Material. 2011, 10, 382.   DOI   ScienceOn
26 Hwang, Y.-H.; Jeon, J.-H.; Bae, B.-S. Electrochemical and Solid- State Lett. 2011, 14, H303.   DOI   ScienceOn
27 Hwang, Y.-H.; Seo, J.-S.; Yun, J. M.; Park, H.-J.; Yang, S.-Y.; Park, S.-H. K.; Bae, B.-S. NPG Asia Materials 2013, 5, e45.   DOI   ScienceOn
28 Dhannanjay, Chu, C.-W. Appl. Phys. Lett. 2007, 91, 132111.   DOI   ScienceOn
29 (a) Nakazawa, H.; Ito, Y.; Matsumoto, E.; Adachi, K.; Aoki, N.; Ochiai, Y. J. Appl. Phys. 2006, 100, 093706.   DOI   ScienceOn
30 Jeong, S.; Ha, Y.-G.; Moon, J.; Facchetti, A.; Marks, T. J. Adv. Mater. 2010, 22, 1346.   DOI   ScienceOn
31 (a) Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706.   DOI   ScienceOn
32 Seo, J.-S.; Jeon, J.-H.; Hwang, Y.-H.; Park, H.-J.; Ryu, M.; Park, K. S.-H.; Bae, B.-S. Scientific Report. 2013, 3, 2085.
33 Nilsen, O.; Balasundaraprabhu, R.; Monakhov, E. V.; Muthukumarasamy, N.; Fjellvag, H.; Svensson, B. G. Thin Solid Films 2009, 517, 6320.   DOI   ScienceOn