• 제목/요약/키워드: Oxide thin film transistors

검색결과 314건 처리시간 0.025초

Improved Electrical Properties of Indium Gallium Zinc Oxide Thin-Film Transistors by AZO/Ag/AZO Multilayer Electrode

  • No, Young-Soo;Yang, Jeong-Do;Park, Dong-Hee;Kim, Tae-Whan;Choi, Ji-Won;Choi, Won-Kook
    • 센서학회지
    • /
    • 제22권2호
    • /
    • pp.105-110
    • /
    • 2013
  • We fabricated an a-IGZO thin film transistor (TFT) with AZO/Ag/AZO transparent multilayer source/drain contacts by rf magnetron sputtering. a-IGZO TFT with AZO/Ag/AZO multilayer S/D electrodes (W/L = 400/50 ${\mu}m$) showed a subs-threshold swing of 3.78 V/dec, a minimum off-current of $10^{-12}$ A, a threshold voltage of 0.41 V, a field effect mobility of $10.86cm^2/Vs$, and an on/off ratio of $9{\times}10^9$. From the ultraviolet photoemission spectroscopy, it was revealed that the enhanced electrical performance resulted from the lowering of the Schottky barrier between a-IGZO and Ag due to the insertion of an AZO layer and thus the AZO/Ag/AZO multilayer would be very appropriate for a promising S/D contact material for the fabrication of high performance TFTs.

A Transparent Logic Circuit for RFID Tag in a-IGZO TFT Technology

  • Yang, Byung-Do;Oh, Jae-Mun;Kang, Hyeong-Ju;Park, Sang-Hee;Hwang, Chi-Sun;Ryu, Min Ki;Pi, Jae-Eun
    • ETRI Journal
    • /
    • 제35권4호
    • /
    • pp.610-616
    • /
    • 2013
  • This paper proposes a transparent logic circuit for radio frequency identification (RFID) tags in amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) technology. The RFID logic circuit generates 16-bit code programmed in read-only memory. All circuits are implemented in a pseudo-CMOS logic style using transparent a-IGZO TFTs. The transmittance degradation due to the transparent RFID logic chip is 2.5% to 8% in a 300-nm to 800-nm wavelength. The RFID logic chip generates Manchester-encoded 16-bit data with a 3.2-kHz clock frequency and consumes 170 ${\mu}W$ at $V_{DD}=6$ V. It employs 222 transistors and occupies a chip area of 5.85 $mm^2$.

Electrical Properties of Metal-Ferroelectric-Insulator-Semiconductor Field-Effect Transistor Using an Au/$(Bi,La)_4Ti_3O_{12}/LaZrO_x$/Si Structure

  • Jeon, Ho-Seung;Lee, Gwang-Geun;Kim, Joo-Nam;Park, Byung-Eun;Choi, Yun-Soo
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.171-172
    • /
    • 2007
  • We fabricated the metal-ferroelectric-insulator-semiconductor filed-effect transistors (MFIS-FETs) using the $(Bi,La)_4Ti_3O_{12}\;and\;LaZrO_x$ thin films. The $LaZrO_x$ thin film had a equivalent oxide thickness (EOT) value of 8.7 nm. From the capacitance-voltage (C-V) measurements for an Au/$(Bi,La)_4Ti_3O_{12}/LaZrO_x$/Si MFIS capacitor, a hysteric shift with a clockwise direction was observed and the memory window width was about 1.4 V for the bias voltage sweeping of ${\pm}9V$. From drain current-gate voltage $(I_D-V_G)$ characteristics of the fabricated Fe-FETs, the obtained threshold voltage shift (memory window) was about 1 V due to ferroelectric nature of BLT film. The drain current-drain voltage $(I_D-V_D)$ characteristics of the fabricated Fe-FETs showed typical n-channel FETs current-voltage characteristics.

  • PDF

용액공정으로 제작한 PVP-IZO TFT의 UV-O3 처리를 통한 전기적 특성 향상 연구 (Study on Electrical Characteristic Improvement of PVP-IZO TFT Prepared by Solution Process Using UV-O3 Treatment)

  • 김유정;정준교;박정현;정병준;이가원
    • 반도체디스플레이기술학회지
    • /
    • 제16권2호
    • /
    • pp.66-69
    • /
    • 2017
  • In this paper, solution based Indium Zinc Oxide thin film transistors (IZO TFTs) were fabricated with PVP gate dielectric. To enhance the electrical properties, UV-O3 treatment is proposed on solution based IZO TFTs. The gate leakage current and interface trap density is compatible with conventional ZnO-based TFT with inorganic gate insulator. Especially, the UV-treated device shows improved electrical characteristics compared to the untreated device. These results can be explained by X-ray photoelectron spectroscopy (XPS) analysis, which shows that the oxygen vacancy of UV-O3 treatment is higher than that of no treatment.

  • PDF

Effects of Mg Suppressor Layer on the InZnSnO Thin-Film Transistors

  • Song, Chang-Woo;Kim, Kyung-Hyun;Yang, Ji-Woong;Kim, Dae-Hwan;Choi, Yong-Jin;Hong, Chan-Hwa;Shin, Jae-Heon;Kwon, Hyuck-In;Song, Sang-Hun;Cheong, Woo-Seok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제16권2호
    • /
    • pp.198-203
    • /
    • 2016
  • We investigate the effects of magnesium (Mg) suppressor layer on the electrical performances and stabilities of amorphous indium-zinc-tin-oxide (a-ITZO) thin-film transistors (TFTs). Compared to the ITZO TFT without a Mg suppressor layer, the ITZO:Mg TFT exhibits slightly smaller field-effect mobility and much reduced subthreshold slope. The ITZO:Mg TFT shows improved electrical stabilities compared to the ITZO TFT under both positive-bias and negative-bias-illumination stresses. From the X-ray photoelectron spectroscopy O1s spectra with fitted curves for ITZO and ITZO:Mg films, we observe that Mg doping contributes to an enhancement of the oxygen bond without oxygen vacancy and a reduction of the oxygen bonds with oxygen vacancies. This result shows that the Mg can be an effective suppressor in a-ITZO TFTs.

Experimental Investigation of Physical Mechanism for Asymmetrical Degradation in Amorphous InGaZnO Thin-film Transistors under Simultaneous Gate and Drain Bias Stresses

  • Jeong, Chan-Yong;Kim, Hee-Joong;Lee, Jeong-Hwan;Kwon, Hyuck-In
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제17권2호
    • /
    • pp.239-244
    • /
    • 2017
  • We experimentally investigate the physical mechanism for asymmetrical degradation in amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs) under simultaneous gate and drain bias stresses. The transfer curves exhibit an asymmetrical negative shift after the application of gate-to-source ($V_{GS}$) and drain-to-source ($V_{DS}$) bias stresses of ($V_{GS}=24V$, $V_{DS}=15.9V$) and ($V_{GS}=22V$, $V_{DS}=20V$), but the asymmetrical degradation is more significant after the bias stress ($V_{GS}$, $V_{DS}$) of (22 V, 20 V) nevertheless the vertical electric field at the source is higher under the bias stress ($V_{GS}$, $V_{DS}$) of (24 V, 15.9 V) than (22 V, 20 V). By using the modified external load resistance method, we extract the source contact resistance ($R_S$) and the voltage drop at $R_S$ ($V_{S,\;drop}$) in the fabricated a-IGZO TFT under both bias stresses. A significantly higher RS and $V_{S,\;drop}$ are extracted under the bias stress ($V_{GS}$, $V_{DS}$) of (22 V, 20V) than (24 V, 15.9 V), which implies that the high horizontal electric field across the source contact due to the large voltage drop at the reverse biased Schottky junction is the dominant physical mechanism causing the asymmetrical degradation of a-IGZO TFTs under simultaneous gate and drain bias stresses.

Effects of Simultaneous Bending and Heating on Characteristics of Flexible Organic Thin Film Transistors

  • Cho, S.W.;Kim, D.I.;Lee, N.E.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.470-470
    • /
    • 2013
  • Recently, active materials such as amorphous silicon (a-Si), poly crystalline silicon (poly-Si), transition metal oxide semiconductors (TMO), and organic semiconductors have been demonstrated for flexible electronics. In order to apply flexible devices on the polymer substrates, all layers should require the characteristic of flexibility as well as the low temperature process. Especially, pentacene thin film transistors (TFTs) have been investigated for probable use in low-cost, large-area, flexible electronic applications such as radio frequency identification (RFID) tags, smart cards, display backplane driver circuits, and sensors. Since pentacene TFTs were studied, their electrical characteristics with varying single variable such as strain, humidity, and temperature have been reported by various groups, which must preferentially be performed in the flexible electronics. For example, the channel mobility of pentacene organic TFTs mainly led to change in device performance under mechanical deformation. While some electrical characteristics like carrier mobility and concentration of organic TFTs were significantly changed at the different temperature. However, there is no study concerning multivariable. Devices actually worked in many different kinds of the environment such as thermal, light, mechanical bending, humidity and various gases. For commercialization, not fewer than two variables of mechanism analysis have to be investigated. Analyzing the phenomenon of shifted characteristics under the change of multivariable may be able to be the importance with developing improved dielectric and encapsulation layer materials. In this study, we have fabricated flexible pentacene TFTs on polymer substrates and observed electrical characteristics of pentacene TFTs exposed to tensile and compressive strains at the different values of temperature like room temperature (RT), 40, 50, $60^{\circ}C$. Effects of bending and heating on the device performance of pentacene TFT will be discussed in detail.

  • PDF

Photofield-Effect in Amorphous In-Ga-Zn-O (a-IGZO) Thin-Film Transistors

  • Fung, Tze-Ching;Chuang, Chiao-Shun;Nomura, Kenji;Shieh, Han-Ping David;Hosono, Hideo;Kanicki, Jerzy
    • Journal of Information Display
    • /
    • 제9권4호
    • /
    • pp.21-29
    • /
    • 2008
  • We studied both the wavelength and intensity dependent photo-responses (photofield-effect) in amorphous In-Ga-Zn-O (a-IGZO) thin-film transistors (TFTs). During the a-IGZO TFT illumination with the wavelength range from $460\sim660$ nm (visible range), the off-state drain current $(I_{DS_off})$ only slightly increased while a large increase was observed for the wavelength below 400 nm. The observed results are consistent with the optical gap of $\sim$3.05eV extracted from the absorption measurement. The a-IGZO TFT properties under monochromatic illumination ($\lambda$=420nm) with different intensity was also investigated and $I_{DS_off}$ was found to increase with the light intensity. Throughout the study, the field-effect mobility $(\mu_{eff})$ is almost unchanged. But due to photo-generated charge trapping, a negative threshold voltage $(V_{th})$ shift is observed. The mathematical analysis of the photofield-effect suggests that a highly efficient UV photocurrent conversion process in TFT off-region takes place. Finally, a-IGZO mid-gap density-of-states (DOS) was extracted and is more than an order of magnitude lower than reported value for hydrogenated amorphous silicon (a-Si:H), which can explain a good switching properties observed for a-IGZO TFTs.

게이트 전극 물질이 a-IGZO 박막트랜지스터의 전기적 특성에 미치는 영향 (Effect of gate electrode material on electrical characteristics of a-IGZO thin-film transistors)

  • 오현곤;조경아;김상식
    • 전기전자학회논문지
    • /
    • 제21권2호
    • /
    • pp.170-173
    • /
    • 2017
  • 본 연구에서는 Al, Mo 및 Pt 금속 물질을 a-IGZO 박막트랜지스터의 게이트 전극으로 플라스틱 기판 위에 형성하여 제작하고, 게이트 물질에 따른 전기적 특성을 측정하였다. Al 게이트 전극에 비해 Pt 게이트 전극을 사용한 박막트랜지스터의 문턱전압은 -4.1V에서 -0.3 V까지 감소하였고, 전하이동도는 $15.8cm^2/V{\cdot}s$에서 $22.1cm^2/V{\cdot}s$ 로 향상되었다. 게이트 전극에 따른 박막트랜지스터의 문턱전압 이동은 전극의 일함수와 채널층의 페르미 에너지 차이로 인한 영향이라는 것을 확인 할 수 있었다. 또한, 채널 물질의 페르미 에너지를 고려하였을 경우에 Pt 게이트 전극이 박막트랜지스터의 전기적 특성 면에서 적합한 물질로 확인되었다. 추가적으로 Mo 게이트 전극을 사용한 박막트랜지스터에 대한 특성도 본 논문에서 다룬다.

유연한 기판상의 유기 트랜지스터의 절연 표면층 상태 변화에 의한 전기적 특성 향상 (Changes of dielectric surface state In organic TFTs on flexible substrate)

  • 김종무;이주원;김영민;박정수;김재경;장진;오명환;주병권
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 춘계학술대회 논문집 디스플레이 광소자분야
    • /
    • pp.86-89
    • /
    • 2004
  • Organic thin film transistors (OTFTs) are fabricated on the plastic substrate through 4-level mask process without photolithographic patterning to yield the simple fabrication process. And we herewith report for the effect of dielectric surface modification on the electrical characteristics of OTFTs. The KIST-JM-1 as an organic molecule for the surface modification is deposited onto the surface of zirconium oxide $(ZrO_2)$ gate dielectric layer. In this work, we have examined the dependence of electrical performance on the interface surface state of gate dielectric/pentacene, which may be modified by chemical properties in the gate dielectric surface.

  • PDF