DOI QR코드

DOI QR Code

Effects of Mg Suppressor Layer on the InZnSnO Thin-Film Transistors

  • Song, Chang-Woo (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Kim, Kyung-Hyun (Nano Interface Device Team, Electronics and Telecommunications Research Institute) ;
  • Yang, Ji-Woong (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Kim, Dae-Hwan (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Choi, Yong-Jin (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Hong, Chan-Hwa (Nano Interface Device Team, Electronics and Telecommunications Research Institute) ;
  • Shin, Jae-Heon (Nano Interface Device Team, Electronics and Telecommunications Research Institute) ;
  • Kwon, Hyuck-In (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Song, Sang-Hun (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Cheong, Woo-Seok (Nano Interface Device Team, Electronics and Telecommunications Research Institute)
  • Received : 2015.08.25
  • Accepted : 2015.10.15
  • Published : 2016.04.30

Abstract

We investigate the effects of magnesium (Mg) suppressor layer on the electrical performances and stabilities of amorphous indium-zinc-tin-oxide (a-ITZO) thin-film transistors (TFTs). Compared to the ITZO TFT without a Mg suppressor layer, the ITZO:Mg TFT exhibits slightly smaller field-effect mobility and much reduced subthreshold slope. The ITZO:Mg TFT shows improved electrical stabilities compared to the ITZO TFT under both positive-bias and negative-bias-illumination stresses. From the X-ray photoelectron spectroscopy O1s spectra with fitted curves for ITZO and ITZO:Mg films, we observe that Mg doping contributes to an enhancement of the oxygen bond without oxygen vacancy and a reduction of the oxygen bonds with oxygen vacancies. This result shows that the Mg can be an effective suppressor in a-ITZO TFTs.

Keywords

References

  1. H. Frenzel, A. Lajn, H. Von Wenckstern, M. Lorenz, F. Schein, Z. Zhang, and M. Grundmann, "Recent progress on ZnO-Based Metal-Semiconductor Field-Effect Transistor and Their Application in Transparent Integrated Circuits," Adv. Mater., vol. 22, pp. 5332-5349, Sep. 2010. https://doi.org/10.1002/adma.201001375
  2. C. -Y. Wu, H. -C. Cheng, C. -L. Wang, T. -C. Liao, P. -C. Chiu, C. -H. Tsai, C. -H. Fang, and C. -C. Lee, "Reliability improvement of InGaZnO thin film transistors encapsulated under nitrogen ambient," Appl. Phys. Lett., vol. 100, no. 15, pp. 152108-1-152108-4, Apr. 2012. https://doi.org/10.1063/1.3702794
  3. J. Jiang, M. Furuta, and D. Wang, "Self-Aligned Bottom-Gate In-Ga-Zn-O Thin-Film Transistor With Source/Drain Regions Formed by Direct Deposition of Fluorinated Silicon Nitride," " IEEE Electron Device Lett., vol. 35, no. 9, pp. 933-935, Sep. 2014. https://doi.org/10.1109/LED.2014.2336880
  4. S. Tomai, M. Nishimura, M. Itose, M. Matuura, M. Kasami, S. Matsuzaki, H. Kawashima, F. Utsuno, and K. Yano, "High-Performance Thin Film Transistor with Amorphous $In_2O_3-SnO_2-ZnO$ Channel Layer," Jpn. J. Appl. Phys., vol. 51, pp. 03CB01-1-03CB01-5, Mar. 2012. https://doi.org/10.7567/JJAP.51.03CB01
  5. J. H. Song, K. S. Kim, Y. G. Mo, R. Choi, and J K Jeong, "Achieving High Field-Effect Mobility Exceeding $50cm^2/Vs$ in In-Zn-Sn-O Thin-Film Transistors," IEEE Electron Device Lett., vol. 35, no. 8, pp. 853-855, Aug. 2014. https://doi.org/10.1109/LED.2014.2329892
  6. A. Onodera, N. Tamaki, K. Jin, and H. Yamashita, "Ferroelectric properties in piezoelectric semiconductor $Zn_{1-x}M_xO$ (M = Li, Mg)," Jpn. J. Appl. Phys., vol. 36, no. 9B, pp. 6008-6011, Sep. 1997. https://doi.org/10.1143/JJAP.36.6008
  7. A. Takagi, K. Nomura, H. Ohta, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, "Carrier transport and electronic structure in amorphous oxide semiconductor, a-$InGaZnO_4$," Thin Solid Films, vol. 486, no. 1-2, pp. 38-41, Aug. 2004. https://doi.org/10.1016/j.tsf.2004.11.223
  8. K. -H. Lee, J. S. Jung, K. S. Son, J. S. Park, T. S. Kim, R. Choi, J. K. Jeong, J. -Y. Kwon, B. Koo, and S. Lee, "The effects of moisture on the photonenhanced negative bias thermal instability in Ga-In-Zn-O thin film transistors," Appl. Phys. Lett., vol. 95, no. 23, pp. 232106-1-232106-3, Dec. 2009. https://doi.org/10.1063/1.3272015
  9. B. Ryu, H. -K. Noh, E. -A. Choi, and K. J. Chang, "O-vacancy as the origin of negative bias illumination stress instability in amorphous In-Ga-Zn-O thin film transistors," Appl. Phys. Lett., vol. 97, no. 2, pp. 022108-1-022108-3, Jul. 2010. https://doi.org/10.1063/1.3464964
  10. N. Tabet, M. Faiz, and A. Al-Oteibi, "XPS study of nitrogen-implanted ZnO thin films obtained by DCMagnetron reactive plasma," J. Electron Spectrosc. Relat. Phenom., vol. 163, no. 1-3, pp. 15-18, Apr. 2008. https://doi.org/10.1016/j.elspec.2007.11.003