• 제목/요약/키워드: Oxide electrode

검색결과 1,140건 처리시간 0.037초

Analysis of Blood Flow-dependent Blood Nitric Oxide Level and Half-life of Nitric Oxide in Vivo

  • Kim Cuk-Seong;Kim Hyo-Shin;Lee Young-Jun;Park Jin Bory;Ryoo Sung-Woo;Chang Seok-Jang;Jeon Byeong-Hwa
    • International Journal of Vascular Biomedical Engineering
    • /
    • 제1권2호
    • /
    • pp.13-19
    • /
    • 2003
  • Endothelial release of nitric oxide (NO) contributes to the regulation of vascular tone by inducing vascular relaxation. To estimate the blood flow-dependent nitric oxide level and half-life (T1/2) of nitric oxide in vivo state, we investigated the change of aortic NO currents during the change of aortic blood flow rate using NO-selective electrode system and electromagnetic flowmeter in the aorta of anesthetized rats. Resting mean aortic blood flow rate was $49.6{\pm}5.6ml/min$ in the anesthetized rats. NO currents in the aorta were increased by the elevation of blood pressure and/or blood flow rate. When the aortic blood flow was occluded by the clamping, aortic NO currents were decreased. The difference of NO concentration between resting state and occluded state was $1.34{\pm}0.26{\mu}M$ (n=7). This NO concentration was estimated as blood flow-dependent nitric oxide concentration in the rats. Also, while the aortic blood flow was occluded, NO currents were decreased with exponential pattern with $12.84{\pm}2.15$ seconds of time constant and $7.70{\pm}1.07$ seconds of half-life. To summarize, this study suggested that blood flow-dependent NO concentration and half-life of nitric oxide were about $1.3{\mu}M$ and 7.7 seconds, respectively, in the aorta of anesthetized rats. The nitric oxide-selective electrode system is useful for the direct and continuous measurement of NO in vivo state.

  • PDF

전기화학 증착법을 이용한 그래핀 개질 Indium Tin Oxide 전극 제작 및 효소 전극에 응용 (Fabrication of Graphene-modified Indium Tin Oxide Electrode Using Electrochemical Deposition Method and Its Application to Enzyme Electrode)

  • 왕설;시키;김창준
    • Korean Chemical Engineering Research
    • /
    • 제60권1호
    • /
    • pp.62-69
    • /
    • 2022
  • 그래핀은 부피에 비해 표면적이 넓고 뛰어난 기계적 물성과 전기전도성을 가지며 생체적합성이 우수하다. 본 연구에서는 전기화학적 방법을 이용하여 indium tin oxide (ITO) 글래스 슬라이드 표면에 산화그래핀을 증착·환원시킨 전극을 제작하였고 그래핀으로 표면 개질된 ITO의 전기화학적 특성을 조사하였다. 산화그래핀의 증착과 환원에 순환전압전류법을 사용하였다. 주사전자현미경과 에너지 분산형 X-선 분광법을 사용하여 그래핀이 코팅된 ITO 표면을 관찰하였다. 순환전압전류법과 전기화학 임피던스 분광법을 사용하여 제작된 전극들의 전기화학 특성을 평가하였다. 사이클 수와 주사 속도는 산화그래핀 증착과 환원도에 상당한 영향을 미쳤으며 제작된 전극의 전기화학 특성도 달랐다. ITO 전극에 비하여 그래핀으로 표면 개질된 ITO는 전극 계면에서의 전하 전달 저항이 낮았고 더 많은 전류를 생산하였다. 그래핀으로 표면 개질된 ITO 표면에 고정화된 포도당 산화효소는 포도당을 산화시키며 성공적으로 전자들을 생성하였다.

염료감응형 태양전지의 투명 전극 식각을 통한 효율 향상 연구 (A Study on the Improvement of Efficiency by Scribing Transparent Conducting Oxide of Dye-sensitized Solar Cell)

  • 서현웅;손민규;이경준;김정훈;김희제
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.416-418
    • /
    • 2008
  • Dye-sensitized solar cell using transparent conducting oxide as electrode has large resistance such as surface resistance, charge transportation impedance in counter electrode and electrolyte, impedance between each interface. Among that resistances, surface resistance of transparent conducting oxide is relatively large. So the change of transparency has a large effect on internal resistance of dye-sensitized solar cell. Consequently, that change cause to increase or decrease the conversion efficiency. We tried to reduce the surface resistance by laser-scribing. The active area is seperated from total transparent conducting oxide by Nd:YAG laser-scribing. As a result, we achieved the improvement of efficiency about 7% and 11% in case of $0.25cm^2$ and $1.00cm^2$ dye-sensitized solar cells.

  • PDF

자동차 배기가스용 NOx센서의 감도향상를 위한 새로운 산화물 감지물질과 변형된 혼합전위 센서의 개발 (The development of new oxide materials and modified mixed potential sensing method for highly sensitive NOx sensor)

  • 박진수;윤병영;박종욱
    • 센서학회지
    • /
    • 제17권1호
    • /
    • pp.61-68
    • /
    • 2008
  • The sensing characteristics of new oxide sensing materials, NiO, NiO-YSZ and CuO, were evaluated at the temperature of $700^{\circ}C$ in 10 % $O_2$containing atmosphere. Through simultaneous response to $NO_2$ and NO, the sensing mechanism of oxide electrode was studied and the relation of EMF and NO/$NO_2$ concentrations was elucidated. Moreover, for highly sensitive NOx sensor, modified mixed potential sensor which has at least two oxide electrodes was proposed.

Effects of Electrolyte Concentration and Relative Cathode Electrode Area Sizes in Titania Film Formation by Micro-Arc Oxidation

  • Lee, Yong-K.;Lee, Kang-Soo
    • Corrosion Science and Technology
    • /
    • 제9권4호
    • /
    • pp.171-174
    • /
    • 2010
  • MAO (micro-arc oxidation) is an eco-friendly convenient and effective technology to deposit high-quality oxide coatings on the surfaces of Ti, Al, Mg and their alloys. The roles of the electrolyte concentration and relative cathode electrode area sizes in the grown oxide film during titanium MAO were investigated. The higher the concentration of the electrolyte, the lower the $R_{total}A$ value. The oxide film produced by the lower concentration of the electrolyte is thinner and less uniform than the film by the higher concentration, which is thick and porous. The cathode area size must be bigger than the anode area size in order to minimize the voltage drop across the cathode. The ratio of the cathode area size to the anode area size must be bigger than 8. Otherwise, the cathode will be another source for voltage drop, which is detrimental to and slows down the oxide growth.

상대전극 제작 방식에 따른 염료감응형 태양전지 특성 비교 연구 (A comparative study on the characteristics of the dye-sensitized solar cell with different methods of manufacturing the counter electrode)

  • 손민규;서현웅;신인영;김진경;홍지태;채원용;김희제
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1338_1339
    • /
    • 2009
  • Dye-sensitized solar cell (DSC) consists of photo electrode, counter electrode and electrolyte. Photo electrode has titanium oxide layer with dye molecule to create electrons. And counter electrode is made of one layer that has catalytic ability for redox system such as the iodide/triiodide couple. Most DSC researchers use platinum as catalyst on counter electrode because platinum has good catalytic ability and conductivity. Platinum is doped on fluorine-doped tin oxide glass with different methods such as sputtering method, electrochemical method and so on. In this paper, we deposit platinum on counter electrode glass with two methods. One is the radio frequency (RF) sputtering method and the other is the chemical method with heating treatment. Finally, we compare the photovoltaic characteristics of DSCs that are assembled using two different counter electrodes.

  • PDF

Continuous Roll-to-Roll(R2R) sputtering system for growing flexible and transparent conducting oxide electrode at room temperature

  • Park, Yong-Seok;Jeong, Jin-A;Park, Ho-Kyun;Kim, Han-Ki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.1575-1577
    • /
    • 2009
  • We have investigated the characteristics of transparent indium zinc oxide(IZO)/Ag/IZO multilayer electrode grown on polyethylene terephthalate (PET) substrates using a specially designed roll-to-roll sputtering system for use in flexible device are described. By the continuous R2R sputtering of the bottom IZO, Ag, and top IZO layers at room temperature, we were able to fabricate an IZO-Ag-IZO multilayer electrode with a sheet resistance of 6.15 ${\Omega}$/square, optical transmittance of 87.4 %, and figure of merit value of 42.03 10-3 ${\Omega}$-1. In addition, the IZO-Ag-IZO multilayer electrode exhibited superior flexibility to the RTR sputter grown single ITO electrode, due to the existence a ductile Ag layer between the IZO layers. This indicates that the RTR sputtered IZO-Ag-IZO multilayer is a promising flexible electrode that can substitute for the conventional single ITO electrode grown by bath type sputtering for use in low cost flexible device, due to its low resistance, high transparency, superior flexibility and fast preparation by the R2R process.

  • PDF

AZO 투명 전극 기반 반투명 실리콘 박막 태양전지 (AZO Transparent Electrodes for Semi-Transparent Silicon Thin Film Solar Cells)

  • 남지윤;조성진
    • 한국전기전자재료학회논문지
    • /
    • 제30권6호
    • /
    • pp.401-405
    • /
    • 2017
  • Because silicon thin film solar cells have a high absorption coefficient in visible light, they can absorb 90% of the solar spectrum in a $1-{\mu}m$-thick layer. Silicon thin film solar cells also have high transparency and are lightweight. Therefore, they can be used for building integrated photovoltaic (BIPV) systems. However, the contact electrode needs to be replaced for fabricating silicon thin film solar cells in BIPV systems, because most of the silicon thin film solar cells use metal electrodes that have a high reflectivity and low transmittance. In this study, we replace the conventional aluminum top electrode with a transparent aluminum-doped zinc oxide (AZO) electrode, the band level of which matches well with that of the intrinsic layer of the silicon thin film solar cell and has high transmittance. We show that the AZO effectively replaces the top metal electrode and the bottom fluorine-doped tin oxide (FTO) substrate without a noticeable degradation of the photovoltaic characteristics.

CCFL 전극의 플라즈마 처리에 관한 연구 (Study on Plasma Treatment of electrode for CCFL)

  • 박현식
    • 한국산학기술학회논문지
    • /
    • 제12권3호
    • /
    • pp.1308-1312
    • /
    • 2011
  • CCFL(Cold Cathode Fluorescent Lamp)는 LCD의 BLU와 특수조명용으로 널리 활용되고 있다. CCFL 제조공정에 있어 CCFL 전극 산화막이 형성되어 솔더 불량을 가져오기 때문에 산화 막 제거가 필요하다. 본 논문에서는 CCFL 전극 산화 막 제거를 위하여 플라즈마 처리를 수행하였다. 플라즈마 처리 최적 공정 확보하기위하여 면 저항, XRD, AFM, 솔더링 테스트 등의 분석이 진행되었다. 플라즈마 최적 공정 조건인 사용전력 600W와 처리시간 70초에서 최소의 면 저항과 최대의 솔더 피복 비율이 측정되었다. 이와 같은 현상은 플라즈마 처리로 구리 산화 막 제거에 기인한 것으로 확인되어 플라즈마를 이용한 전극 산화 막 제거 공정은 CCFL 전극 처리 공정에 활용이 기대된다.

Activated Carbon-Nickel (II) Oxide Electrodes for Capacitive Deionization Process

  • Gandionco, Karl Adrian;Kim, Jin Won;Ocon, Joey D.;Lee, Jaeyoung
    • 공업화학
    • /
    • 제31권5호
    • /
    • pp.552-559
    • /
    • 2020
  • Activated carbon-nickel (II) oxide (AC-NiO) electrodes were studied as materials for the capacitive deionization (CDI) of aqueous sodium chloride solution. AC-NiO electrodes were fabricated through physical mixing and low-temperature heating of precursor materials. The amount of NiO in the electrodes was varied and its effect on the deionization performance was investigated using a single-pass mode CDI setup. The pure activated carbon electrode showed the highest specific surface area among the electrodes. However, the AC-NiO electrode with approximately 10 and 20% of NiO displayed better deionization performance. The addition of a dielectric material like NiO to the carbon material resulted in the enhancement of the electric field, which eventually led to an improved deionization performance. Among all as-prepared electrodes, the AC-NiO electrode with approximately 10% of NiO gave the highest salt adsorption capacity and charge efficiency, which are equal to 7.46 mg/g and 90.1%, respectively. This finding can be attributed to the optimum enhancement of the physical and chemical characteristics of the electrode brought by the addition of the appropriate amount of NiO.