Browse > Article
http://dx.doi.org/10.14773/cst.2010.9.4.171

Effects of Electrolyte Concentration and Relative Cathode Electrode Area Sizes in Titania Film Formation by Micro-Arc Oxidation  

Lee, Yong-K. (Department of Nano/IT Engineering, Seoul National University of Technology)
Lee, Kang-Soo (Xerochem Inc.)
Publication Information
Corrosion Science and Technology / v.9, no.4, 2010 , pp. 171-174 More about this Journal
Abstract
MAO (micro-arc oxidation) is an eco-friendly convenient and effective technology to deposit high-quality oxide coatings on the surfaces of Ti, Al, Mg and their alloys. The roles of the electrolyte concentration and relative cathode electrode area sizes in the grown oxide film during titanium MAO were investigated. The higher the concentration of the electrolyte, the lower the $R_{total}A$ value. The oxide film produced by the lower concentration of the electrolyte is thinner and less uniform than the film by the higher concentration, which is thick and porous. The cathode area size must be bigger than the anode area size in order to minimize the voltage drop across the cathode. The ratio of the cathode area size to the anode area size must be bigger than 8. Otherwise, the cathode will be another source for voltage drop, which is detrimental to and slows down the oxide growth.
Keywords
MAO(micro-arc oxidation); titanium; corrosion; oxide film; electrolyte concentration;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. D. Brown, K. J. Kuna, and T. B. Van, J. Am. Ceram. Soc., 54, 384 (1971).   DOI
2 L. H. Li, Y. M. Kong, and H. W. Kim, Biomaterials, 25, 2867 (2004).   DOI   ScienceOn
3 X. L. Zhu, K. H. Kim, and Y. S. Jeong, Biomaterials, 22, 2199 (2001).   DOI   ScienceOn
4 X. Y. Liu, K. C. Paul, and C. X. Ding, Mater. Sci. Eng. R. 47, 49 (2004).   DOI   ScienceOn
5 Y. M. Wang, D. C. Jia, L. X. Guo, T. Q. Lei, and B. L. Jiang, Maler. Chem. Phys., 90, 128 (2005).
6 A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews, and S. J. Dowey, Surf. Coat. Technol., 122, 73 (1999).
7 V. S. Rudnev, T. P. Yarovaya, D. L. Boguta, L. N. Tyrina, P. M. Nedozorov, and P. S. Gordienko, J. Electroanal. Chem., 497, 150 (2001).   DOI
8 T. Haneda, S. Ito, C. Yoshimura, and S. I. Ishida, Zairyo Gijutsu, 11, 274 (1993).
9 P. Kurze, W. Krysmann, and H. G. Schneider, Cryst. Res. Technol., 21, 1603 (1986).   DOI
10 S. D. Brown, G. P. Wirtz, and W. M. Kriven, Mater. Sci. Monogr. High Perf. Ceram. Films Coat., 67, 221 (1991).
11 W. Xue, Z. Deng, R. Chen, and T. Zhang, Thin Solid Films, 372, 114 (2000).   DOI
12 A. Aladjem, J. Mater. Sci., 8, 688 (1973).   DOI   ScienceOn
13 J. Pouilleau, D. Devilliers, F. Garrido, S. Durand-Vidal, and E. Mahe, Mater. Sci. Eng. B, 47, 235 (1997).   DOI   ScienceOn
14 K. J. Park and J. H. Lee, Corros. Sci. Tech., 8. 227 (2009).
15 X. L. Zhu, L. J. Ong, S. Y. Kim, and K. H. Kim, J. Biomed. Mater. Res., 60, 333 (2002).   DOI   ScienceOn
16 W. H. Song, Y. K. Jun, Y. Han, and S. H. Hong, Biomaterials, 25, 3341 (2004).   DOI
17 G. Sundarajan and L. R. Krishna, Surf. Coat. Technol., 167, 269 (2003).   DOI   ScienceOn