• Title/Summary/Keyword: Oxide bonding

Search Result 310, Processing Time 0.023 seconds

Electrical Interconnection with a Smart ACA Composed of Fluxing Polymer and Solder Powder

  • Eom, Yong-Sung;Jang, Keon-Soo;Moon, Jong-Tae;Nam, Jae-Do
    • ETRI Journal
    • /
    • v.32 no.3
    • /
    • pp.414-421
    • /
    • 2010
  • The interconnection mechanisms of a smart anisotropic conductive adhesive (ACA) during processing have been characterized. For an understanding of chemorheological mechanisms between the fluxing polymer and solder powder, a thermal analysis as well as solder wetting and coalescence experiments were conducted. The compatibility between the viscosity of the fluxing polymer and melting temperature of solder was characterized to optimize the processing cycle. A fluxing agent was also used to remove the oxide layer performed on the surface of the solder. Based on these chemorheological phenomena of the fluxing polymer and solder, an optimum polymer system and its processing cycle were designed for high performance and reliability in an electrical interconnection system. In the present research, a bonding mechanism of the smart ACA with a polymer spacer ball to control the gap between both substrates is newly proposed and investigated. The solder powder was used as a conductive material instead of polymer-based spherical conductive particles in a conventional anisotropic conductive film.

Raman and Fluorescence Studies of Thermotropic Liquid-Crystalline Oligomers with Different Type of Coils

  • Chae, Jong-Bok;Yu, Soo-Chang;Lee, Youn-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.2
    • /
    • pp.193-199
    • /
    • 2007
  • Raman and fluorescence spectroscopies were employed to study the coil effects on the intermolecular structure of a rod-coil liquid crystalline (LC) oligomer, the esterification products of ethyl 4-[4'-oxy-4-biphenylcarbonyloxy]- 4'-biphenylcarboxylate with poly(propylene)oxides (PPO) (DP=12) and poly(ethylene oxide)s (PEO) (DP=12). Three different vibrational modes (carbonyl, aromatic C-H, and aromatic C=C) obtained from the Raman experiment at variable temperature indicate that PPO and PEO coils induce the hydrogen bonding in a different manner. Further information about the micro-environment around the mesogenic unit obtained by fluorescence excitation spectra of P12-4 (LC with PPO coil) and 12-4 (LC with PEO coil) suggests that the mesogenic unit of P12-4 is quite different from that of 12-4 in intermolecular structure. This study supports the results obtained only from Raman spectroscopy, providing more accurate information about the intermolecular structural changes of liquid crystalline polymers at a molecular level during the phase transitions.

Characteristics of Machined Surface Roughness and Surface Layers of WC-Co Tools with Plasma Source Ion Implantation (WC-Co 공구의 이온 주입에 따른 표면층 및 가공된 표면거칠기 특성)

  • Kang, Seong-Ki;Kim, Yung-Kyu;Wang, Duck-Hyun;Chun, Young-Rok;Kim, Won-Il
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.1
    • /
    • pp.106-113
    • /
    • 2010
  • The most suitable condition for plasma source ion implantation(PSII) was found based on the study of the characteristics of PSIIed tool and machined surfaces. The depth analysis according to the chemical bonding state of elements and surface component elements through the XPS and SIMS, was conducted to find the improved property of the PSIIed surface. Due to the diffusion of PSII, the nitrogen was found up to a depth of about 150nm according to the supplied voltage and ion implanted time. The deep diffusion by nitrogen caused the surface modification, but the formation of oxide component was found due to the residual gas contamination on the surface. Statistical method of ANOVA was conducted to find the effects of spindle speed and feed rate in interaction for machined surface roughness with PSIIed tools. The surface modification was found largely occurred by the nitrogen implanted surface with 2 hours for 27kV, 35kV and 43kV.

Design of Parasitic Inductance Reduction in GaN Cascode FET for High-Efficiency Operation

  • Chang, Woojin;Park, Young-Rak;Mun, Jae Kyoung;Ko, Sang Choon
    • ETRI Journal
    • /
    • v.38 no.1
    • /
    • pp.133-140
    • /
    • 2016
  • This paper presents a method of parasitic inductance reduction for high-speed switching and high-efficiency operation of a cascode structure with a low-voltage enhancement-mode silicon (Si) metal-oxide-semiconductor field-effect transistor (MOSFET) and a high-voltage depletion-mode gallium nitride (GaN) fielde-ffect transistor (FET). The method is proposed to add a bonding wire interconnected between the source electrode of the Si MOSFET and the gate electrode of the GaN FET in a conventional cascode structure package to reduce the most critical inductance, which provides the major switching loss for a high switching speed and high efficiency. From the measured results of the proposed and conventional GaN cascode FETs, the rising and falling times of the proposed GaN cascode FET were up to 3.4% and 8.0% faster than those of the conventional GaN cascode FET, respectively, under measurement conditions of 30 V and 5 A. During the rising and falling times, the energy losses of the proposed GaN cascode FET were up to 0.3% and 6.7% lower than those of the conventional GaN cascode FET, respectively.

Fabrication and Characteristics of High-sensitivity Si Hall Sensors for High-temperature Applications (고온용 고감도 실리콘 홀 센서의 제작 및 특성)

  • 정귀상;노상수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.565-568
    • /
    • 2000
  • This paper describes on the temperature characteristics of a SDB(silicon-wafer direct bonding) SOI(silicon-on-insulator) Hall sensor. Using the buried oxide $SiO_2$ as a dielectrical isolation layer, a SDB SOI Hall sensor without pn junction isolation has been fabricated on the Si/$SiO_2$/Si structure. The Hall voltage and the sensitivity of the implemented SOI Hall sensor show good linearity with respect to the applied magnetic flux density and supplied current. In the temperature range of 25 to $300^{\circ}C$, the shifts of TCO(temperature coefficient of the offset voltage) and TCS(temperature coefficient of the product sensitivity) are less than $\pm 6.7$$\times$$10^{-3}$/$^{\circ}C$ and $\pm 8.2$$\times$$10^{-4}$/$^{\circ}C$respectively. These results indicate that the SDB SOI structure has potential for the development of a silicon Hall sensor with a high-sensitivity and hip high-temperature operation.

  • PDF

A Study on the Etching Characteristics of $CeO_2$ Thin Films using inductively coupled $Cl_2$/Ar Plasma (유도 결합 플라즈마($Cl_2$/Ar)를 이용한 $CeO_2$ 박막의 식각 특성 연구)

  • 오창석;김창일;권광호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.29-32
    • /
    • 2000
  • Cerium oxide thin film has been proposed as a buffer layer between the ferroelectric film and the Si substrate in Metal-Ferroelectric-Insulator-Silicon (MFIS ) structures for ferroelectric random access memory (FRAM) applications. In this study, CeO$_2$ thin films were etched with Cl$_2$/Ar gas combination in an inductively coupled plasma (ICP). The highest etch rate of CeO$_2$ film is 230 $\AA$/min at Cl$_2$/(Cl$_2$+Ar) gas mixing ratio of 0.2. This result confirms that CeO$_2$ thin film is dominantly etched by Ar ions bombardment and is assisted by chemical reaction of Cl radicals. The selectivity of CeO$_2$ to YMnO$_3$ was 1.83. As a XPS analysis, the surface of etched CeO$_2$ thin films was existed in Ce-Cl bond by chemical reaction between Ce and Cl. The results of XPS analysis were confirmed by SIMS analysis. The existence of Ce-Cl bonding was proven at 176.15 (a.m.u.).

  • PDF

Study on Fluorine Penetration of Capping Layers using FTIR analysis (FTIR을 이용한 캐핑레이어의 플루오르 침투 특성 연구)

  • Lee, Do-Won;Kim, Nam-Hoon;Kim, Sang-Yong;Kim, Tae-Hyoung;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.300-303
    • /
    • 2004
  • To fill the gap of films for metal-to-metal space High density plasma fluorinated silicate glass (HDP FSG) is used due to various advantages. However, FSG films can have critical drawbacks such as bonding issue of top metal at package, metal contamination, metal peel-off, and so on. These problems are generally caused by fluorine penetration out of FSG film. Hence, FSG capping layers such like SRO(Silicon Rich Oxide) are required to prevent flourine penetration. In this study, their characteristics and a capability to block fluorine penetration for various FSG capping layers are investigated through FTIR analysis. FTIR graphs of both SRO using ARC chamber and SiN show that clear Si-H bonds at $2175{\sim}2300cm^{-1}$. Thus, Si-H bond at $2175{\sim}2300cm^{-1}$ of FSG capping layers lays a key role to block fluorine penetration as well as dangling bond.

  • PDF

Properties of ZnO thin film grown on $Al_2O_3$ substrate pretremented by nitrogen ion beam (이온빔으로 질화처리된 사파이어기판위에 성장한 ZnO박막의 특성)

  • Park, Byung-Jun;Jung, Yeon-Sik;Park, Jong-Young;Choi, Du-Jin;Choi, Won-Kook;Yoon, Seok-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.413-416
    • /
    • 2004
  • In this study, zinc oxide(ZnO) having large misfit(18.2%) with sapphire was tried to be grown on very thin nitride buffer layers. For the creation of various kinds of nitride buffer layer, sapphire surface was modified by an irradiation of nitrogen ion beam with low energy generated from stationary plasma thruster(SPT) at room temperature. After the irradiation of ion beam, Al-N and Al-O-N bonding was identified to be formed as nitride buffet layers. Surface morphology was measured by AFM and then ZnO growth was followed by pulsed laser deposition(PLD). Their properties are analyzed by XRD, AFM, TEM, and PL. We observed that surface morphology was improved and deep level emission related to defects was almost vanished in PL spectra from the ZnO grown on nitride buffer layer.

  • PDF

The Influence of Encapsulation Layer Incorporated into Flexible Substrates for Bending Stress (Flexible 기판의 Bending Stress에 대한 Encapsulation Layer의 영향)

  • Park, Jun-Baek;Seo, Dae-Shik;Lee, Sang-Keuk;Lee, Joon-Ung;Kim, Yong-Hoon;Moon, Dae-Gyu;Han, Jeong-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.473-476
    • /
    • 2003
  • This paper shows necessity of encapsulation layer to maximite flexibility of brittle indium-tin-oxide (ITO) on polymer substrates. And, Young's modulus (E) of encapsulation layer have an significant effect on external bending stress and the coefficient of thermal expansion (CTE) of that have a significant effect on internal thermal stress. To compare magnitude of total mechanical stress including both bending stress and thermal stress, the mechanical stress of triple-layer structure (substrate / ITO / encapsulation layer or substrate / buffer layer / ITO) can be quantified and numerically analyzed through the farthest cracked island position. As a result, it should be noted that multi-layer structures with more elastic encapsulation material have small mechanical stress compared to that of buffer and encapsulation structure of large Young's modulus material when they were externally bent.

  • PDF

Self-Organized Grafting of Carbon Nanotubes by End-Functionalized Polymers

  • Lee, Sun-Hwa;Park, Ji-Sun;Koo, Chong-Min;Lim, Bo-Kyung;Kim, Sang-Ouk
    • Macromolecular Research
    • /
    • v.16 no.3
    • /
    • pp.261-266
    • /
    • 2008
  • A variety of end-functionalized polymers were grafted spontaneously onto multi-walled carbon nano-tubes (MWNTs) using a solution mixing process. The end-functional groups of the polymers underwent noncovalent grafting to the defect sites at the surface of the purified MWNTs through zwitterionic interaction or hydrogen bonding. The physically grafted polymers including polystyrene (PS), poly(methyl methacrylate) (PMMA), polyethylene oxide (PEO), and polydimethylsiloxane (PDMS) provided sufficient compatibility with an organic solvent or polymer matrix, such that the nanotubes could be finely dispersed in various organic media. This approach is universally applicable to a broad range of polymer-solvent pairs, ensuring highly dispersed carbon nanotubes through simple solution mixing.