• Title/Summary/Keyword: Oxide Semiconductor

Search Result 1,419, Processing Time 0.048 seconds

Extending the Single-Mode-Operation Radius of the Oxide-VCSEL by Controlling the Thickness and Position of the Oxide-Layer (Oxide층의 두께와 위치 조절을 통한 oxido-VCSEL의 단일모드 동작반경 확장)

  • 김남길;김상배
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.9
    • /
    • pp.31-37
    • /
    • 2004
  • We have proposed a design methodology for large active-area single-mode VCSELS, which have higher reliability and output power, and are well-suited for high-speed operation. The key idea underlying the design methodology is to reduce the effective index difference between active and cladding regions by controlling the thickness and position of the oxide layer. The idea is confirmed by the self-consistent effective index method. By placing the oxide layer position properly, we can increase the radius of the oxide aperture for single-mode operation by 3 times.

Change in the Energy Band Gap and Transmittance IGZO, ZnO, AZO OMO Structure According to Ag Thickness (IGZO, ZnO, AZO OMO 구조의 Ag두께 변화에 따른 투과율과 에너지 밴드 갭의 변화)

  • Lee, Seung-Min;Kim, Hong-Bae;Lee, Sang-Yeol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.3
    • /
    • pp.185-190
    • /
    • 2015
  • In this study, we fabricated the indium gallium zinc oxide (IGZO), zinc oxide (ZnO), aluminum zinc oxide (AZO). oxide and silver are deposited by magnetron sputtering and thermal evaporator, respectively transparency and energy bandgap were changed by the thickness of silver layer. To fabricate metal oxide metal (OMO) structure, IGZO sputtered on a corning 1,737 glass substrate was used as bottom oxide material and then silver was evaporated on the IGZO layer, finally IGZO was sputtered on the silver layer we get the final OMO structure. The radio-frequency power of the target was fixed at 30 W. The chamber pressure was set to $6.0{\times}10^{-3}$ Torr, and the gas ratio of Ar was fixed at 25 sccm. The silver thickness are varied from 3 to 15 nm. The OMO thin films was analyzed using XRD. XRD shows broad peak which clearly indicates amorphous phase. ZnO, AZO, OMO show the peak [002] direction at $34^{\circ}$. This indicate that ZnO, AZO OMO structure show the crystalline peak. Average transmittance of visible region was over 75%, while that of infrared region was under 20%. Energy band gap of OMO layer was increased with increasing thickness of Ag layer. As a result total transmittance was decreased.

Synthesis of ZnO nanoparticles and their photocatalytic activity under UV light

  • Nam, Sang-Hun;Kim, Myeong-Hwa;Bu, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.423-423
    • /
    • 2011
  • Zinc oxide is metal oxide semiconductor with the 3.37 eV bandgap energy. Zinc oxide is very attractive materials for many application fields. Zinc Oxide has many advantages such as high conductivity and good transmittance in visible region. Also it is cheaper than other semiconductor materials such as indium tin oxide (ITO). Therefore, ZnO is alternative material for ITO. ZnO is attracting attention for its application to transparent conductive oxide (TCO) films, surface acoustic wave (SAW), films bulk acoustic resonator (FBAR), piezoelectric materials, gas-sensing, solar cells and photocatalyst. In this study, we synthesized ZnO nanoparticles and defined their physical and chemical properties. Also we studied about the application of ZnO nanoparticles as a photocatalyst and try to find a enhancement photocatalytic activity of ZnO nanorticles.. We synthesized ZnO nanoparticles using spray-pyrolysis method and defined the physical and optical properties of ZnO nanoparticles in experiment I. When the ZnO are exposed to UV light, reduction and oxidation (REDOX) reaction will occur on the ZnO surface and generate O2- and OH radicals. These powerful oxidizing agents are proven to be effective in decomposition of the harmful organic materials and convert them into CO2 and H2O. Therefore, we investigated that the photocatalytic activity was increased through the surface modification of synthesized ZnO nanoparticles. In experiment II, we studied on the stability of ZnO nanoparticles in water. It is well known that ZnO is unstable in water in comparison with TiO2. Zn(OH)2 was formed at the ZnO surface and ZnO become inactive as a photocatalyst when ZnO is present in the solution. Therefore, we prepared synthesized ZnO nanoparticles that were immersed in the water and dried in the oven. After that, we measured photocatalytic activities of prepared samples and find the cause of their photocatalytic activity changes.

  • PDF

Synthesis of functional ZnO nanoparticles and their photocatalytic properties

  • Nam, Sang-Hun;Kim, Myoung-Hwa;Lee, Sang-Duck;Kim, Min-Hee;Boo, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.54-54
    • /
    • 2010
  • Zinc oxide is metal oxide semiconductor with the 3.37 eV bandgap energy. Zinc oxide is very attractive materials for many application fields. Zinc Oxide has many advantages such as high conductivity and good transmittance in visible region. Also it is cheaper than other semiconductor materials such as indium tin oxide (ITO). Therefore, ZnO is alternative material for ITO. ZnO is attracting attention for its application to transparent conductive oxide (TCO) films, surface acoustic wave (SAW), films bulk acoustic resonator (FBAR), piezoelectric materials, gas-sensing, solar cells and photocatalyst. In this study, we synthesized ZnO nanoparticles and defined their physical and chemical properties. Also we studied about the application of ZnO nanoparticles as a photocatalyst and try to find a enhancement photocatalytic activity of ZnO nanorticles.. We synthesized ZnO nanoparticles using spray-pyrolysis method and defined the physical and optical properties of ZnO nanoparticles in experiment I. When the ZnO are exposed to UV light, reduction and oxidation(REDOX) reaction will occur on the ZnO surface and generate ${O_2}^-$ and OH radicals. These powerful oxidizing agents are proven to be effective in decomposition of the harmful organic materials and convert them into $CO_2$ and $H_2O$. Therefore, we investigated that the photocatalytic activity was increased through the surface modification of synthesized ZnO nanoparticles. In experiment II, we studied on the stability of ZnO nanoparticles in water. It is well known that ZnO is unstable in water in comparison with $TiO_2$. $Zn(OH)_2$ was formed at the ZnO surface and ZnO become inactive as a photocatalyst when ZnO is present in the solution. Therefore, we prepared synthesized ZnO nanoparticles that were immersed in the water and dried in the oven. After that, we measured photocatalytic activities of prepared samples and find the cause of their photocatalytic activity changes.

  • PDF

Breakdown characteristics of gate oxide with tungsten polycide electrode (텅스텐 폴리사이드 전극에 따른 게이트 산화막의 내압 특성)

  • 정회환;이종현;정관수
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.12
    • /
    • pp.77-82
    • /
    • 1996
  • The breakdown characteristics of metal-oxide-semiconductor(MOS) capacitors fabricated by Al, polysilicon, and tungsten polycide gate electrodes onto gate oxide was evaluated by time zero dielectric breakdwon (TZDB). The average breakdown field of the gate oxide with tungsten polycide electride was lower than that of the polysilicon electrode. The B model (1~8MV/cm) failure of the gate oxide with tungsten polycide electrode was increased with increasing annealing temperature in the dry $O_{2}$ ambient. This is attributed ot fluorine and tungsten diffusion from thungsten silicide film into the gate oxide, and stress increase of tungsten polcide after annealing treatment.

  • PDF

Synthesis of Graphene Oxide Based CuOx Nanocomposites and Application for C-N Cross Coupling Reaction

  • Choi, Jong Hoon;Park, Joon B.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.176.1-176.1
    • /
    • 2014
  • Graphene has attracted an increasing attention due to its extraordinary electronic, mechanical, and thermal properties. Especially, the two dimensional (2D) sheet of graphene with an extremely high surface to volume ratio has a great potential in the preparation of multifunctional nanomaterials, as 2D supports to host metal nanoparticles (NPs). Copper oxide is widely used in various areas as antifouling paint, p-type semiconductor, dry cell batteries, and catalysts. Although the copper oxide(II) has been well known for efficient catalyst in C-N cross-coupling reaction, copper oxide(I) has not been highlighted. In this research, CuO and Cu2O nanoparticles (NPs) dispersed on the surface of grapehene oxide (GO) have been synthesized by impregnation method and their morphological and electronic structures have been systemically investigated using TEM, XRD, and XAFS. We demonstrate that both CuO and Cu2O on graphene presents efficient catalytic performance toward C-N cross coupling reaction. The detailed structural difference between CuO and Cu2O NPs and their effect on catalytic performance are discussed.

  • PDF

Development of I-Chuck for Oxide Etcher (Oxide Etcher 용 E-Chuck의 기술개발)

  • 조남인;남형진;박순규
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.4
    • /
    • pp.361-365
    • /
    • 2003
  • A unipolar-type E-chuck was fabricated for the application of holding silicon wafers in the oxide etcher. For the fabrication of the unipolar ESC, core technologies such as coating of polyimide films and anodizing treatment of aluminum surface were developed. The polyimide films were prepared on thin coated copper substrates to minimize the plasma damage during the etch processing. Thin film heater technology was also developed for new type of E-chuck.

  • PDF

Resistivity Variation of Nickel Oxide by Substrate Heating in RF Sputter for Microbolometer

  • Lee, Yong Soo
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.348-352
    • /
    • 2015
  • Thin nickel oxide films formed on uncooled and cooled $SiO_2/Si$ substrates using a radio frequency (RF) magnetron sputter powered by 200 W in a mixed atmosphere of argon and oxygen. Grazing-incidence X-ray diffraction and field emission scanning electron microscopy are used for the structural analysis of nickel oxide films. The electrical conductivity required for better bolometric performance is estimated by means of a four-point probe system. Columnar and (200) preferred orientations are discovered in both films regardless of substrate cooling. Electric resistivity, however, is greatly influenced by the substrate cooling. Oxygen partial pressure increase during the nickel oxide deposition leads to a rapid decrease in resistivity, and the resistivity is higher in the cooled nickel oxide samples. Even when small microstructure variations are applied, lower resistivity in favor of low noise performance is acquired in the uncooled samples.

XPS Study of MoO3 Interlayer Between Aluminum Electrode and Inkjet-Printed Zinc Tin Oxide for Thin-Film Transistor

  • Choi, Woon-Seop
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.6
    • /
    • pp.267-270
    • /
    • 2011
  • In the process of inkjet-printed zinc tin oxide thin-film transistor, the effect of metallic interlayer underneath of source and drain electrode was investigated. The reason for the improved electrical properties with thin molybdenum oxide ($MoO_3$) layer was due to the chemically intermixed state of metallic interlayer, aluminum source and drain, and oxide semiconductor together. The atomic configuration of three Mo $3d_3$ and $3d_5$ doublets, three different Al 2p core levels, two Sn $3d_5$, and four different types of oxygen O 1s in the interfaces among those layers was confirmed by X-ray photospectroscopy.

The Schottky Diode of Optimal Stepped Oxide Layer for High Breakdown Voltage (높은 항복전압을 위한 최적 계단산화막의 쇼트키 다이오드)

  • Lee, Yong Jae;Lee, Moon Key;Kim, Bong Ryul
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.4
    • /
    • pp.484-489
    • /
    • 1986
  • A device with variable stepped oxide layer along the edge region of Schottky junction have been designed and fabricated. The effect of this stepped oxide layer in the edge region improves the breakdown voltage as a result of the by increase of the depletion layer width, and decreases the leakage current as compared to the effect of conventional field oxide layer, when the reverse voltage was applied. Experimental results shown that the Schottky diode with the the reverse voltage was applied. Experimenal results show that the Schottky diode with the optimal stepped oxide layer maintains nearly ideal I-V characteristics and excellent breakdown voltage(170V) by reducing the edge effect inherent in metal-semiconductor contacts. The optimal conditions of stepped oxide layer are 1700\ulcornerin thickness and 10\ulcorner in length.

  • PDF