• Title/Summary/Keyword: Oxide Deposition

Search Result 1,530, Processing Time 0.03 seconds

Hafnium Oxide Nano-Film Deposited on Poly-Si by Atomic Layer Deposition

  • Wei, Hung-Wen;Ting, Hung-Che;Chang, Chung-Shu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.496-498
    • /
    • 2005
  • We reported that high dielectric hafnium oxide nano-film deposited by thermal atomic layer deposition on the poly-silicon film (poly-Si). The poly -Si film was produced by plasma enhanced chemical vapor deposition and excimer laser annealing. We used the hafniu m chloride ($HfCl_4$) and water as the precursors and analyzed the hafnium oxide film by transmission electron microscope and secondary ion mass spectrometer. Hafnium oxide produced by the ALD method showed very good coverage on the rough surface of poly-Si film. While deposited with 200 cycles, these hafnium oxide films revealed a relatively smooth surface and good uniformity, but the cumulative roughness produced by the incomplete reaction was apparent when the amount of deposition cycle increased to 600 cycles.

  • PDF

Conformal Zinc Oxide Thin Film Deposition on Graphene using molecular linker by Atomic Layer Deposition

  • Park, Jin-Seon;Han, Gyu-Seok;Jo, Bo-Ram;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.280.2-280.2
    • /
    • 2016
  • The graphene, a single atomic sheet of graphite, has attracted tremendous interest owing to its novel properties including high intrinsic mobility, optical transparency and flexibility. However, for more diverse application of graphene devices, it is essential to tune its transport behavior by shifting Dirac Point (DP) of graphene. So, in the following context, we suggest a method to tune structural and electronic properties of graphene using atomic layer deposition. By atomic layer deposition of zinc oxide (ZnO) on graphene using 4-mercaptophenol as linker, we can fabricate n-doped graphene. Through ${\pi}-{\pi}$ stacking between chemically inert graphene and 4-mercaptophenol, conformal deposition of ZnO on graphene was enabled. The electron mobility of graphene TFT increased more than 3 times without considerably decreasing the hole mobility, compared to the pristine graphene. Also, it has high air stability. This ZnO doping method by atomic layer deposition can be applicable to large scale array of CVD graphene TFT.

  • PDF

Preparation of Electrolytic Tungsten Oxide Thin Films as the Anode in Rechargeable Lithium Battery (리튬 이차전지용 텅스텐 산화물 전해 도금 박막 제조)

  • Lee, Jun-Woo;Choi, Woo-Sung;Shin, Heon-Cheol
    • Korean Journal of Materials Research
    • /
    • v.23 no.12
    • /
    • pp.680-686
    • /
    • 2013
  • Tungsten oxide films were prepared by an electrochemical deposition method for use as the anode in rechargeable lithium batteries. Continuous potentiostatic deposition of the film led to numerous cracks of the deposits while pulsed deposition significantly suppressed crack generation and film delamination. In particular, a crack-free dense tungsten oxide film with a thickness of ca. 210 nm was successfully created by pulsed deposition. The thickness of tungsten oxide was linearly proportional to deposition time. Compositional and structural analyses revealed that the as-prepared deposit was amorphous tungsten oxide and the heat treatment transformed it into crystalline triclinic tungsten oxide. Both the as-prepared and heat-treated samples reacted reversibly with lithium as the anode for rechargeable lithium batteries. Typical peaks for the conversion processes of tungsten oxides were observed in cyclic voltammograms, and the reversibility of the heat-treated sample exceeded that of the as-prepared one. Consistently, the cycling stability of the heat-treated sample proved to be much better than that of the as-prepared one in a galvanostatic charge/discharge experiment. These results demonstrate the feasibility of using electrolytic tungsten oxide films as the anode in rechargeable lithium batteries. However, further works are still needed to make a dense film with higher thickness and improved cycling stability for its practical use.

Effects of Seed Layer and Thermal Treatment on Atomic Layer Deposition-Grown Tin Oxide

  • Choi, Woon-Seop
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.5
    • /
    • pp.222-225
    • /
    • 2010
  • The preparation of tin oxide thin films by atomic layer deposition (ALD), using a tetrakis (ethylmethylamino) tin precursor, and the effects of a seed layer on film growth were examined. The average growth rate of tin oxide films was approximately 1.2 to 1.4 A/cycle from $50^{\circ}C$ to $150^{\circ}C$. The rate rapidly decreased at the substrate temperature at $200^{\circ}C$. A seed effect was not observed in the crystal growth of tin oxide. However, crystallinity and the growth of seed material were detected by XPS after thermal annealing. ALD-grown seeded tin oxide thin films, as-deposited and after thermal annealing, were characterized by X-ray diffraction, atomic force microscopy and XPS.

Effects of Various Deposition Rates of Al2O3 Gate Insulator on the Properties of Organic Thin Film Transistor (알루미늄 옥사이드 절연층의 증착율이 유기박막 트랜지스터의 특성에 미치는 영향)

  • Choi, Kyung-Min;Hyung, Gun-Woo;Kim, Young-Kwan;Choi, Eou-Sik;Kwon, Sang-Jik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.12
    • /
    • pp.1063-1066
    • /
    • 2009
  • In this study, we fabricated pentacene organic thin film trasistors(OTFTs) which used aluminum oxide as the gate insulator. Aluminum oxide for OTFTs was deposited on glass substrate with a different deposition rate by E-beam evaporation. In case of the deposition rate of $0.1\;{\AA}$, the fabricated aluminum oxide gate insulating OTFT showed a threshold voltage of -1.36 V, an on/off current ratio of $1.9{\times}10^3$ and field effect mobility $0.023\;cm^2/V_s$.

A Study on Surface Growth Direction and Particle Shape According to the Amount of Oxygen and Deposition Parameters

  • Jeong, Jin;Kim, Seung Hee
    • Journal of Integrative Natural Science
    • /
    • v.11 no.4
    • /
    • pp.209-211
    • /
    • 2018
  • A zinc oxide thin film doped with aluminum was deposited by RF sputtering. The deposition temperature of the sputter chamber was kept constant at $350^{\circ}C$, the power supplied to the chamber was 75 W, the oxygen flow rate was changed to 10 sccm and 20 sccm, and the thin film deposition time was changed to 120 and 180 minutes. The structures of the deposited zinc oxide thin films were analyzed by van der Waals method using an X-ray diffractometer. As a result of X-ray diffraction, the amount of oxygen supplied to the zinc oxide thin film increased, and the surface growth of the (002), (400), (110), and (103) planes showed a change with increasing deposition time. Moreover, as the amount of oxygen supplied to the zinc oxide thin film increased, their shape was observed to be coarse, and the thin film' s particles shape was correlated with the oxygen chemical defect introduced.

Nickel Oxide Nano-Flake Films Synthesized by Chemical Bath Deposition for Electrochemical Capacitors (CBD(Chemical Bath Deposition) 법으로 제조된 전기화학식 캐패시터용 NiO 나노박편 필름)

  • Kim, Young-Ha;Park, Soo-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.163.2-163.2
    • /
    • 2010
  • In this work, nano-flake shaped nickel oxide (NiO) films were synthesized by chemical bath deposition technique for electrochemical capacitors. The deposition was carried out for 1 and 2 h at room temperature using nickel foam as the substrate and the current collector. The structure and morphology of prepared NiO film were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). And, electrochemical properties were characterized by cyclic voltammetry, galvanostatic charge-discharge, and AC impedence measurement. It was found that the NiO film was constructed by many interconnected NiO nano-flakes which arranged vertically to the substrate, forming a net-like structure with large pores. The open macropores may facilitate the electrolyte penetration and ion migration, resulted in the utilization of nickel oxide due to the increased surface area for electrochemical reactions. Furthermore, it was found that the deposition onto nickel foam as substrate and curent collector led to decrease of the ion transfer resistance so that its specific capacitance of a NiO film had high value than NiO nano flake powder.

  • PDF

Optimization of Electrical and Optical Properties of a-IZO Thin Film for High-Efficiency Solar Cells (고효율 태양전지용 a-IZO 박막의 전기적 및 광학적 특성 최적화에 관한 연구 )

  • Somin Park;Sungjin Jeong;Jiwon Choi;Youngkuk Kim;Junsin Yi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.1
    • /
    • pp.49-55
    • /
    • 2023
  • The deposition of indium zinc oxide (IZO) thin films was carried out on substrate at room temperature by RF magnetron sputtering. The effects of substrate temperature, RF power and deposition pressure were investigated with respect to physical and optical properties of films such as deposition rate, electrical properties, structure, and transmittance. As the RF power increases, the resistivity gradually decreases, and the transmittance slightly decreases. For the variation of deposition pressure, the resistivity greatly increases, and the transmittance is decreased with increasing deposition pressure. As a result, it was demonstrated that an IZO film with the resistivity of 3.89 × 10-4 Ω∙cm, the hole mobility of 51.28 cm2/Vs, and the light transmittance of 86.89% in the visible spectrum at room temperature can be prepared without post-deposition annealing.

Oxidation Behavior of Oxide Particle Spray-deposited Mo-Si-B Alloys

  • Park, J.S.;Kim, J.M.;Kim, H.Y.;Perepezko, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.20 no.6
    • /
    • pp.299-305
    • /
    • 2007
  • The effect of spray deposition of oxide particles on oxidation behaviors of as-cast Mo-14.2Si-9.6B (at%) alloys at $1200^{\circ}C$ up to for 100 hrs has been investigated. Various oxide powders are utilized to make coatings by spray deposition, including $SiO_2,\;TiO_2,\;ZrO_2,\;HfO_2$ and $La_2O_3$. It is demonstrated that the oxidation resistance of the cast Mo-Si-B alloy can be significantly improved by coating with those oxide particles. The growth of the oxide layer is reduced for the oxide particle coated Mo-Si-B alloy. Especially, for the alloy with $ZrO_2$ coating, the thickness of oxide layer becomes only one fifth of that of uncoated alloys when exposed to in air for 100 hrs. The reduction of oxide scale growth of the cast Mo-Si-B alloy due to oxide particle coatings are discussed in terms of the change of viscosity of glassy oxide phases that form during oxidation at high temperature.

Thermal analysis of anodically deposited manganese oxide film (Anodic deposition된 $MnO_2$ 막의 열분석 특성)

  • Kim, Bong-Seo;Lee, Dong-Yoon;Lee, Hee-Woong;Chung, Won-Sub
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.900-903
    • /
    • 2003
  • Using $DV-X{\alpha}$ method, it is calculated that nickel reduces the energy band gap of manganese oxide in 3 additives of titanium, nickel and tin. Therefore, it is estimated that the electrical conductivity of manganese-nickel oxide has the lowest value in 3 kinds of manganese oxide. The manganese oxide and manganese-nickel oxide which were produced by anodic deposition under $30mA/cm^2$ at room temperature in manganese sulfate and manganese-nickel sulfate solution were thermal-analyzed by DTA and TGA. The weight change of manganese oxide continuously decreased below $508^{\circ}C$ and kept constant at $518{\sim}600^{\circ}C$. However, the manganeses-nickel oxide transformed at the temperature range of $510{\sim}537^{\circ}C$. It is observed that the nickel addition to manganese oxide increases transformation temperature and its range.

  • PDF