Oxidation Behavior of Oxide Particle Spray-deposited Mo-Si-B Alloys

  • Park, J.S. (Hanbat National University, Advanced Materials Engineering) ;
  • Kim, J.M. (Hanbat National University, Advanced Materials Engineering) ;
  • Kim, H.Y. (Hanbat National University, Advanced Materials Engineering) ;
  • Perepezko, J.H. (University of Wisconsin-Madison, Materials Science & Engineering)
  • Published : 2007.11.30

Abstract

The effect of spray deposition of oxide particles on oxidation behaviors of as-cast Mo-14.2Si-9.6B (at%) alloys at $1200^{\circ}C$ up to for 100 hrs has been investigated. Various oxide powders are utilized to make coatings by spray deposition, including $SiO_2,\;TiO_2,\;ZrO_2,\;HfO_2$ and $La_2O_3$. It is demonstrated that the oxidation resistance of the cast Mo-Si-B alloy can be significantly improved by coating with those oxide particles. The growth of the oxide layer is reduced for the oxide particle coated Mo-Si-B alloy. Especially, for the alloy with $ZrO_2$ coating, the thickness of oxide layer becomes only one fifth of that of uncoated alloys when exposed to in air for 100 hrs. The reduction of oxide scale growth of the cast Mo-Si-B alloy due to oxide particle coatings are discussed in terms of the change of viscosity of glassy oxide phases that form during oxidation at high temperature.

Keywords

References

  1. S. H. Whang, D. P. Pope, and C. T. Liu : High Temperature Aluminides and Intermetallics, Elsevier applied science, London and New York (1991)
  2. J.J. Petrovic and A. K. Vasudevan : Mater. Sci. Eng. A 261(1999) 1 https://doi.org/10.1016/S0921-5093(98)01043-0
  3. K. Ito, M. Kumagai, T. Hayashi, and M. Yamaguch : Scripta Mater. 49 (2003) 285 https://doi.org/10.1016/S1359-6462(03)00289-6
  4. C. A. Nunes, R. Sakidja, Z. Dong, and J. H. Perepezko : Intermetallics, 8 (2000) 327 https://doi.org/10.1016/S0966-9795(99)00088-6
  5. P. Jain, A. P. Alur, and K. S. Kumar: Scripta Mater. 54 (2006) 13 https://doi.org/10.1016/j.scriptamat.2005.09.015
  6. T. C. Chou and T. G. Nieh : Scripta Metallurgica et Materialia, 26 (1992)1637 https://doi.org/10.1016/0956-716X(92)90270-O
  7. K. Natson and S. C. Deevi : Intermetallics 8 (2000) 1147 https://doi.org/10.1016/S0966-9795(00)00060-1
  8. M. K.Meyer, A. J. Thom, and M. Akinc : Intermetallics 7 (1999) 153 https://doi.org/10.1016/S0966-9795(98)00058-2
  9. N. P. Bansal and R. H. Doremus : Handbook of Glass Properties, Academic Press, Orlando (1986)
  10. R. Sakidja, J. S. Park, J. Hamann, and J. H., Perepezko : Scripta Mater., 53 (2005)723 https://doi.org/10.1016/j.scriptamat.2005.05.015
  11. U. Gosele and K. U. Tu : J. Appl. Phys. 53 (1982) 3252 https://doi.org/10.1063/1.331028
  12. A. G. Evans and J. W. Hutchinson : Surface and Coatings Technology, 201 (2007) 7905 https://doi.org/10.1016/j.surfcoat.2007.03.029