• Title/Summary/Keyword: Oxidative stress

Search Result 3,403, Processing Time 0.034 seconds

Tetramethylpyrazine Protects Oxidative Stability and Gelation Property of Rabbit Myofibrillar Proteins

  • Wang, Jianping;Liu, Ning;Zhang, Feike
    • Food Science of Animal Resources
    • /
    • v.39 no.4
    • /
    • pp.623-631
    • /
    • 2019
  • Tetramethylpyrazine (TMP), an alkaloid rich in Ligusticum wallichii and fermented products, possesses multiple pharmacological activities in antioxidant, antiinflammatory, and antibacterial. This study aimed to investigate the effect of TMP (15 mg/L) on the physicochemical and gelation properties of rabbit myofibrillar proteins (MPs) with/without oxidative stress. Results showed that compared to the control, oxidative stress to MPs decreased free thiol content, gel yield, whiteness, water-holding capacity, bounder water, immobilized water, and endogenous tryptophan fluorescence intensity, but increased surface hydrophobicity, dityrosine content, and free water content (p<0.01). Without oxidative stress, MPs treated with TMP increased free thiol content, whiteness, and bound water, but decreased dityrosine content and free water (p<0.05). Under oxidative conditions, all parameters were conversely affected by TMP (p<0.01). The results suggest that TMP can be an antioxidant to decrease the concern on oxidative deterioration during meat processing and storage by improving the oxidative stability, water retention, and gel forming property of rabbit MPs.

Effects of acute dibutyl phthalate administration on hepatic lipid peroxidation and gamma-glutamyl transferase activity in mice (마우스에서 dibutyl phthalate 급성 투여가 간 지질과산화와 gamma-glutamyl transferase 활성에 미치는 효과)

  • 최달웅;김영환
    • Journal of environmental and Sanitary engineering
    • /
    • v.19 no.1
    • /
    • pp.50-56
    • /
    • 2004
  • Dibutyl phthalate (DBP) is used extensively in the plastic industry and has been known as an endocrine disruptor. Present study was undertaken to examine whether DBP can induce oxidative stress in mice. In this study, oxidative stress was measured in terms of the modification of lipid peroxidation and gamma-glutamyl transferase (GGT) activity. The serum toxicity index, level of lipid peroxidation and triglyceride (TG), and activity of GGT were measured in male ICR mice after a single administration of DBP (5 g/kg, po). DBP did not alter serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), creatinine, glucose and cholesterol level. However, the treatment with DBP was found to significantly increase the level of lipid peroxidation in liver and lung. The TG content and activity of GGT in the liver of DBP-exposed animals was also increased. These results indicate that DBP can induce mild oxidative stress in mice. The GGT activity is considered to be increased as one of the adaptive defense mechanisms to oxidative stress induced by DBP.

Effects of Aucubin Isolated from Eucommia ulmoides on UVB-induced Oxidative Stress in Human Keratinocytes HaCaT

  • Ho, Jin-Nyoung;Cho, Hong-Yon;Lim, Eun-Jeong;Kim, Hye-Kyung
    • Food Science and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.475-480
    • /
    • 2009
  • Ultraviolet B (UVB) radiation provokes the generation of reactive oxygen species (ROS) in the cells and skin, which induce oxidative stress in the exposed cells, leading to photoaging and cancer. Using the human keratinocytes HaCaT cell line, we investigated the photoprotective effects of aucubin isolated from Eucommia ulmoides. Pretreatment with aucubin markedly suppressed UVB-induced oxidative stress, which manifests as a decrease in intracellular lipid peroxidation, elevation of catalase activity, and reduced glutathione content. In addition, aucubin significantly reduced expression of matrix metalloproteinase-1 (MMP-1) protein (54%) and mRNA. Taken together, these results suggest that aucubin may offer protection against UVB-induced oxidative stress and may be used as a potential agent in prevention of UVB-induced photoaging.

Nanoscopic Morphological Changes in Yeast Cell Surfaces Caused by Oxidative Stress: An Atomic Force Microscopic Study

  • Canetta, Elisabetta;Walker, Graeme M.;Adya, Ashok K.
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.6
    • /
    • pp.547-555
    • /
    • 2009
  • Nanoscopic changes in the cell surface morphology of the yeasts Saccharomyces cerevisiae (strain NCYC 1681) and Schizosaccharomyces pombe (strain DVPB 1354), due to their exposure to varying concentrations of hydrogen peroxide (oxidative stress), were investigated using an atomic force microscope (AFM). Increasing hydrogen peroxide concentration led to a decrease in cell viabilities and mean cell volumes, and an increase in the surface roughness of the yeasts. In addition, AFM studies revealed that oxidative stress caused cell compression in both S. cerevisiae and Schiz. pombe cells and an increase in the number of aged yeasts. These results confirmed the importance and usefulness of AFM in investigating the morphology of stressed microbial cells at the nanoscale. The results also provided novel information on the relative oxidative stress tolerance of S. cerevisiae and Schizo pombe.

[6]-Gingerol Attenuates Radiation-induced Cytotoxicity and Oxidative Stress in HepG2 Cells

  • Chung, Dong-Min;Uddin, S.M. Nasir;Kim, Jin Kyu
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.4
    • /
    • pp.376-382
    • /
    • 2013
  • [6]-Gingerol, a major polyphenol of ginger (Zingiber officinale), exhibits a variety of biological properties including anti-oxidant, anti-inflammatory and anti-cancer activity. However, the radioprotective effect of [6]-gingerol is still unknown. The aim of this study was to investigate the radioprotective effect of [6]-gingerol against radiation-induced cell cytotoxicity and oxidative stress in HepG2 cells. [6]-Gingerol pretreatment attenuated radiation-induced cell cytotoxicity caused by 5Gy (half lethal dose, $LD_{50}$ of HepG2 cells). The measurements of superoxide dismutase (SOD) and catalase (CAT) activity were also performed. The results showed that [6]-gingerol pretreatment reduced increasing SOD and CAT activity after exposure of IR, indicating that [6]-gingerol protected oxidative stress by regulating cellular antioxidant enzyme (SOD and CAT) activity. These findings suggest that [6]-gingerol acts as a radioprotector by attenuating cell cytotoxicity and oxidative stress.

Protective Effect of Some Medicinal Plants on tert-Butyl Hydroperoxide-Induced Oxidative Stress in Human Keratinocytes

  • Na, Min-Kyun;Jang, Tae-Su;Choi, Ji-Young;Lee, Seung-Ho;Bae, Ki-Hwan
    • Natural Product Sciences
    • /
    • v.14 no.4
    • /
    • pp.244-248
    • /
    • 2008
  • It is well known that excessive production of reactive oxygen species (ROS) leads to oxidative stress, loss of cell function, and ultimately apoptosis or necrosis. To search for natural antioxidants able to modulate cellular oxidative stress, we investigated the protective effect of ethanol extracts of 17 medicinal plants selected from the preliminary antioxidant screening on tert-butyl hydroperoxide (t-BuOOH)-induced oxidative stress in human keratinocytes. The result showed that extracts of the four plants, Distylium racemosum, Astilbe chinensis, Cercis chinensis and Sapium japonicum, exhibited significant cytoprotective activity (over 50% protection) against t-BuOOH-induced cellular injury.

Oxidative stress and endometriosis

  • Cho, Yeon Jean;Kim, Heung Yeol
    • Kosin Medical Journal
    • /
    • v.33 no.2
    • /
    • pp.135-140
    • /
    • 2018
  • Endometriosis is an estrogen-dependent chronic inflammatory condition that affects women in their reproductive period and is associated with pelvic pain and infertility. Oxidative stress (OS) occurs when reactive oxygen stress (ROS) and anti-oxidants are in imbalance. OS is a potential factor involved in the pathophysiology of endometriosis. Iron-induced ROS may trigger a chain of events resulting in the development and progression of endometriosis. Endogenous ROS are correlated with increased cellular proliferation and ERK1/2 activation in human endometriotic cells. An oxidative environment leads to stimulation of the ERK and PI3K/AKT/mTOR signaling pathways that facilitate endometriotic lesion progression through adhesion, angiogenesis, and proliferation. OS is also known to be involved in epigenetic mechanisms in endometriosis. We summarize the recent knowledge in our understanding of the role of oxidative stress in the pathogenesis of endometriosis.

Ingestion of Polystyrene Microplastics Acutely Induces Oxidative Stress in the Marine Medaka Oryzias javanicus

  • Nam, Sang-Eun;Jung, Jee-Hyun;Rhee, Jae-Sung
    • Journal of Marine Life Science
    • /
    • v.6 no.1
    • /
    • pp.31-37
    • /
    • 2021
  • Larvae from the marine medaka fish Oryzias javanicus were exposed with polystyrene microplastics (MPs) for 24 h. Exposure to waterborne fluorescent MPs showed clear ingestion and egestion in feces. Under constant MPs, the concentration of dissolved oxygen significantly decreased in 24 h compared to the control. Significant intracellular reactive oxygen species and malondialdehyde contents were detected in larvae, indicating oxidative stress and lipid peroxidation. Significant elevations in mRNA expressions of heat shock protein 70 and antioxidant defense system genes (glutathione reductase, glutathione peroxidase, catalase, and superoxide dismutase) were measured with increases in enzymatic activity of oxidative stress-related proteins. Taken together, the alterations to the molecular and biochemical components suggested that waterborne MPs had an oxidative stress effect on marine medaka larvae.

Oxidative Stress in Ovariectomy Menopause and Role of Chondroitin Sulfate

  • Ha, Bae-Jin
    • Archives of Pharmacal Research
    • /
    • v.27 no.8
    • /
    • pp.867-872
    • /
    • 2004
  • Oxidative stress due to reactive oxygen species (ROS) can cause oxidative damage to cells. Cells have a number of defense mechanisms to protect themselves from the toxicity of ROS. Mitochondria are especially important in the oxidative stress as ROS have been found to be constantly generated as an endogen threat. Mitochondrial defense depends mainly on super-oxide dismutase (SOD) and glutathione peroxidase (GPx), whereas microsomal defense depends on catalase (CAT), which is an enzyme abundant in microsomes. SOD removes superoxide anions by converting them to $H_2O$$_2$, which can be rapidly converted to water by CAT and GPx. Also, GPx converts hydroperoxide (ROOH) into oxidized-glutathione (GSSG). Ovariectomized (OVX) rats are used as an oxidative stress model. An ovariectomy increased the levels of MDA, one of the end-products in the lipid peroxidative process, and decreased levels of the antioxidative enzymes; SOD, CAT and GPx. However, Chondroitin sulfate (CS) decreased the levels of MDA, but increased the levels of SOD, CAT and GPx in a dose-depen-dent manner. Moreover, inflammation and cirrhosis of liver tissue in CS- treated rats were sig-nificantly decreased. These results suggest that CS might be a potential candidate as an anti oxidative reagent.

Potential crosstalk of oxidative stress and immune response in poultry through phytochemicals - A review

  • Lee, M.T.;Lin, W.C.;Lee, T.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.3
    • /
    • pp.309-319
    • /
    • 2019
  • Phytochemicals which exist in various plants and fungi are non-nutritive compounds that exert numerous beneficial bioactive actions for animals. In recent years following the restriction of antibiotics, phytochemicals have been regarded as a primal selection when dealing with the challenges during the producing process in the poultry industry. The selected fast-growing broiler breed was more fragile when confronting the stressors in their growing environments. The disruption of oxidative balance that impairs the production performance in birds may somehow be linked to the immune system since oxidative stress and inflammatory damage are multi-stage processes. This review firstly discusses the individual influence of oxidative stress and inflammation on the poultry industry. Next, studies related to the application of phytochemicals or botanical compounds with the significance of their antioxidant and immunomodulatory abilities are reviewed. Furthermore, we bring up nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and nuclear factor kappa B ($NF-{\kappa}B$) for they are respectively the key transcription factors involved in oxidative stress and inflammation for elucidating the underlying signal transduction pathways. Finally, by the discussion about several reports using phytochemicals to regulate these transcription factors leading to the improvement of oxidative status, heme oxygenase-1 gene is found crucial for Nrf2-mediated $NF-{\kappa}B$ inhibition.