Browse > Article
http://dx.doi.org/10.4014/jmb.0809.515

Nanoscopic Morphological Changes in Yeast Cell Surfaces Caused by Oxidative Stress: An Atomic Force Microscopic Study  

Canetta, Elisabetta (Condensed Matter Group and BIONTHE (Bio- and Nano- Technologies for Health and Environment) Centre)
Walker, Graeme M. (Abertay Centre for Environment, School of Contemporary Sciences, University of Abertay Dundee)
Adya, Ashok K. (Condensed Matter Group and BIONTHE (Bio- and Nano- Technologies for Health and Environment) Centre)
Publication Information
Journal of Microbiology and Biotechnology / v.19, no.6, 2009 , pp. 547-555 More about this Journal
Abstract
Nanoscopic changes in the cell surface morphology of the yeasts Saccharomyces cerevisiae (strain NCYC 1681) and Schizosaccharomyces pombe (strain DVPB 1354), due to their exposure to varying concentrations of hydrogen peroxide (oxidative stress), were investigated using an atomic force microscope (AFM). Increasing hydrogen peroxide concentration led to a decrease in cell viabilities and mean cell volumes, and an increase in the surface roughness of the yeasts. In addition, AFM studies revealed that oxidative stress caused cell compression in both S. cerevisiae and Schiz. pombe cells and an increase in the number of aged yeasts. These results confirmed the importance and usefulness of AFM in investigating the morphology of stressed microbial cells at the nanoscale. The results also provided novel information on the relative oxidative stress tolerance of S. cerevisiae and Schizo pombe.
Keywords
Atomic force microscopy (AFM); yeast morphology; yeasts physiology; oxidative stress; Saccharomyces cerevisiae; Schizosaccharomyces pombe; premature ageing of cells;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Canetta, E. and A. K. Adya. 2005. Atomic force microscopy:Applications to nanobiotechnology. J. Indian Chem. Soc. 82:93-118
2 Canetta, E., A. K. Adya, and G. M. Walker. 2006. Atomic force microscopic study of the effects of ethanol on yeast cell surface morphology. FEMS Microbiol. Lett. 255: 308-315   DOI   ScienceOn
3 Fotiadis, D., D. J. Muller, G. Tsiotis, L. Hasler, P. Tittmann, T. Mini, P. Jeno, H. Gross, and J. Engel. 1998. Surface analysis of the photosystem I complex by electron and atomic force microscopy. J. Mol. Biol. 283: 83-94   DOI   ScienceOn
4 Gulshan, K., S. A. Rovinsky, and W. S. Moye-Rowley. 2004. YBP1 and its homologue YBP2/YBH1 influence oxidativestress tolerance by nonidentical mechanisms in Saccharomyces cerevisiae. Eukaryot. Cell 3: 318-330   DOI   ScienceOn
5 Madeo, F., E. Frohlich, M. Ligr, M. Grey, S. J. Sigrist, D. H. Wolf, and K. U. Frohlich. 1999. Oxygen stress: A regulator of apopstosis in yeast. J. Cell Biol. 139: 757-767
6 Magnelli, P. E., J. F. Cipollo, and P. W. Robbins. 2005. A glucanase-driven fractionation allows redefinition of Schizosaccharomyces pombe cell wall composition and structure:Assignment of diglucan. Anal. Biochem. 336: 202-212   DOI   ScienceOn
7 Laun, P., A. Pichova, F. Madeo, J. Fuchs, A. Ellinger, S. Kohlwein, I. Dawes, K. Frohlich, and M. Breitenbach. 2001. Aged mother cells of Saccharomyces cerevisiae show markers of oxidative stress and apoptosis. Mol. Microbiol. 39: 1166-1173   DOI   ScienceOn
8 Canetta, E., A. Duperray, A. Leyrat, and C. Verdier. 2005. Measuring cell viscoelastic properties using a force-spectrometer:Influence of protein-cytoplasm interactions. Biorheology 42:321-333   PUBMED   ScienceOn
9 Fotiadis, D., S. Scheuring, S. A. Müller, A. Angel, and D. J. Muller. 2002. Imaging and manipulation of biological structures with the AFM. Micron 33:385-397   DOI   ScienceOn
10 Izawa, S., Y. Inoue, and A. Kimura. 1995. Oxidative stressresponse in yeast - Effect of glutathione on adaptation to hydrogen peroxide stress in Saccharomyces cerevisiae. FEBS Lett. 368: 73-76   DOI   ScienceOn
11 Canetta E., G. M. Walker, and A. K. Adya. 2006. Correlating yeast cell stress physiology to changes in the cell surface morphology: Atomic force microscopic studies. Sci. World J. 6:777-780   DOI
12 Doktycz, M. J., C. J. Sullivan, P. R. Hoyt, D. A. Pelletier, and D. P. Allison. 2003. AFM imaging of bacteria in liquid media immobilised on gelatin coated mica surfaces. Ultramicroscopy 97: 209-216   DOI   PUBMED   ScienceOn
13 Halliwell, H. and J. M. C. Gutteridge. 1999. Free Radicals in Biology and Medicine, 3rd Ed. Oxford University Press, London, U.K
14 Cabiscol, E., E. Piulatas, P. Echaves, E. Herrero, and J. Ros. 2000. Oxidative stress promotes specific protein damage in Saccharomyces cerevisiae. J. Biol. Chem. 275: 27393-27398   PUBMED
15 Costa, V. and P. Moradas-Ferreira. 2001. Oxidative stress and signal transduction in Saccharomyces cerevisiae: Insights into ageing, apoptosis and diseases. Mol. Aspects Med. 22: 217-246   DOI   ScienceOn
16 Moradas-Ferreira, P., V. Costa, P. Piper, and W. Mager. 1996. The molecular defences against reactive oxygen species in yeasts. Molec. Microbiol. 19: 651-658   DOI   ScienceOn
17 Mendez-Vilas, A., J. Diaz, M. G. Donoso, A. M. Gallardo-Moreno, and M. Gonzalez-Martin. 2006. Ultrastructural and physico-chemical heterogeneities of yeast surfaces revealed by mapping lateral-friction and normal-adhesion forces using an atomic force microscope. Antonie van Leeuwenhoek 89: 495-509   DOI   PUBMED
18 Binning, G., C. F. Quate, and C. Gerber. 1986. Atomic force microscope. Phys. Rev. Lett. 56: 930-933   DOI   ScienceOn
19 Fritz, M., M. Radmacher, and H. E. Gaub. 1994. Granular motion and membrane spreading during activation of human platelets imaged by atomic force microscopy. Biophys. J. 66:1328-1334   DOI   ScienceOn
20 Jamieson, D. J. 1998. Oxidative stress response of the yeast Saccharomyces cerevisiae. Yeast 14: 1511-1527   DOI   PUBMED   ScienceOn
21 Bolshakova, A. V., O. I. Kiselyova, and I. V. Yaminsky. 2004. Microbial surfaces investigated using atomic force microscopy. Biotechnol. Progr. 20: 1615-1622   DOI   ScienceOn
22 Adya, A. K., E. Canetta, and G. M. Walker. 2005. Atomic force microscopic study of the influence of physical stresses on Saccharomyces cerevisiae and Schizosaccharomyces pombe. FEMS Yeast Res. 6: 120-128   DOI   ScienceOn
23 Dufrene, Y. F. 2002. Atomic force microscopy, a powerful tool in microbiology. J. Bacteriol. 184: 5205-5213   DOI   PUBMED   ScienceOn
24 Belo, I., R. Pinheiro, and M. Mota. 2005. Morphological and physiological changes in Saccharomyces cerevisiae by oxidative stress from hyperbaric air. J. Biotechnol. 115: 397-404   DOI   ScienceOn
25 Ahimou, F., A. Touhami, and Y. F. Dufrene. 2003. Real-time imaging of the surface topography of living yeast cells by atomic force microscopy. Yeast 20: 25-30   DOI   ScienceOn
26 Cadenas, E. 1989. Biochemistry of oxygen toxicity. Annu. Rev. Biochem. 58: 79-110   DOI   PUBMED   ScienceOn