• Title/Summary/Keyword: Oxidative respiration

Search Result 38, Processing Time 0.02 seconds

Targeting Cancer Metabolism - Revisiting the Warburg Effects

  • Tran, Quangdon;Lee, Hyunji;Park, Jisoo;Kim, Seon-Hwan;Park, Jongsun
    • Toxicological Research
    • /
    • v.32 no.3
    • /
    • pp.177-193
    • /
    • 2016
  • After more than half of century since the Warburg effect was described, this atypical metabolism has been standing true for almost every type of cancer, exhibiting higher glycolysis and lactate metabolism and defective mitochondrial ATP production. This phenomenon had attracted many scientists to the problem of elucidating the mechanism of, and reason for, this effect. Several models based on oncogenic studies have been proposed, such as the accumulation of mitochondrial gene mutations, the switch from oxidative phosphorylation respiration to glycolysis, the enhancement of lactate metabolism, and the alteration of glycolytic genes. Whether the Warburg phenomenon is the consequence of genetic dysregulation in cancer or the cause of cancer remains unknown. Moreover, the exact reasons and physiological values of this peculiar metabolism in cancer remain unclear. Although there are some pharmacological compounds, such as 2-deoxy-D-glucose, dichloroacetic acid, and 3-bromopyruvate, therapeutic strategies, including diet, have been developed based on targeting the Warburg effect. In this review, we will revisit the Warburg effect to determine how much scientists currently understand about this phenomenon and how we can treat the cancer based on targeting metabolism.

The Effect of Melatonin on Mitochondrial Function in Endotoxemia Induced by Lipopolysaccharide

  • Liu, Jing;Wu, Fengming;Liu, Yuqing;Zhang, Tao;Tang, Zhaoxin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.6
    • /
    • pp.857-866
    • /
    • 2011
  • This study examined the metabolism of free radicals in hepatic mitochondria of goats induced by lipopolysaccharide (LPS), and investigated the effects of melatonin (MT). Forty-eight healthy goats ($10{\pm}1.2\;kg$) were randomly selected and divided into four groups: saline control, LPS, MT+LPS and MT. The goats within each group were3 sacrificed either 3 or 6 h after treatment and the livers removed to isolate mitochondria. The respiration control ratio (RCR), the ADP:O ratio, the oxidative phosphorylation ratio (OPR), the concentration of $H_2O_2$ and the activities of Complex I-IV were determined. The mitochondrial membrane potential ($\Delta\psi_m$) was analyzed by flow cytometry. The results showed that RCR, O/P and OPR of the LPS group decreased (p<0.05), as well as activities of respiratory complexes, whereas the generation of $H_2O_2$ in Complex III increased (p<0.05) after 3 h, while Complex II and III increased after 6 h. Also, it was found that the mitochondrial membrane potential of the LPS group declined (p<0.05). However, pre-treatment with MT attenuated the injury induced by LPS, which not only presented higher (p<0.05) RCR, O/P, OPR, and respiratory complex activities, but also maintained the $\Delta\psi_m$. Interestingly, it is revealed that, in the MT+LPS group, the generation of $H_2O_2$ increased firstly in 3 h, and then significantly (p<0.05).decreased after 6 h. In the MT group, the function of mitochondria, the transmenbrane potential and the generation of $H_2O_2$ were obviously improved compared to the control group. Conclusion: melatonin prevents damage caused by LPS on hepatic mitochondria of goats.

Prediction of Non-Genotoxic Carcinogenicity Based on Genetic Profiles of Short Term Exposure Assays

  • Perez, Luis Orlando;Gonzalez-Jose, Rolando;Garcia, Pilar Peral
    • Toxicological Research
    • /
    • v.32 no.4
    • /
    • pp.289-300
    • /
    • 2016
  • Non-genotoxic carcinogens are substances that induce tumorigenesis by non-mutagenic mechanisms and long term rodent bioassays are required to identify them. Recent studies have shown that transcription profiling can be applied to develop early identifiers for long term phenotypes. In this study, we used rat liver expression profiles from the NTP (National Toxicology Program, Research Triangle Park, USA) DrugMatrix Database to construct a gene classifier that can distinguish between non-genotoxic carcinogens and other chemicals. The model was based on short term exposure assays (3 days) and the training was limited to oxidative stressors, peroxisome proliferators and hormone modulators. Validation of the predictor was performed on independent toxicogenomic data (TG-GATEs, Toxicogenomics Project-Genomics Assisted Toxicity Evaluation System, Osaka, Japan). To build our model we performed Random Forests together with a recursive elimination algorithm (VarSelRF). Gene set enrichment analysis was employed for functional interpretation. A total of 770 microarrays comprising 96 different compounds were analyzed and a predictor of 54 genes was built. Prediction accuracy was 0.85 in the training set, 0.87 in the test set and increased with increasing concentration in the validation set: 0.6 at low dose, 0.7 at medium doses and 0.81 at high doses. Pathway analysis revealed gene prominence of cellular respiration, energy production and lipoprotein metabolism. The biggest target of toxicogenomics is accurately predict the toxicity of unknown drugs. In this analysis, we presented a classifier that can predict non-genotoxic carcinogenicity by using short term exposure assays. In this approach, dose level is critical when evaluating chemicals at early time points.

Glucose Oxidation and It's Oxidative Enzyme Systems in Dunaliella tertiolecta.(I) Oxidation of 14C-glucose in Whole Cells and Cell-free Systems (Dunaliella tertiolecta의 포도당산화와 산화효소계 (I) Whole cells과 cell-free systems에 의한 14C-glucose의 산화)

  • 권영명
    • Journal of Plant Biology
    • /
    • v.12 no.2
    • /
    • pp.7-14
    • /
    • 1969
  • Dunaliella tertiolecta did not show any increase in respiration rate when supplied with glucose, glycerol, sucrose, L-alanine, acetate, pyruvate and succinate. This was in contrast to Chlorella pyrenoidosa, which, under identical conditions, showed significant increase when supplied with glucose or acetate but not with the other compounds. Production of 14CO2 from added 14C-glucose in D. tertiolecta was lower than the other 14C-labelled substrates: L-alinine, glycerol, succinate, but higher than 14C-sucrose addition. And it was also lower than C. pyrenoidosa experiments which was added 14C-glucose as a substrate. Light reduced amounts of labelled carbon dioxide from 14C-glucose or 14C-acetate and increased incorporation of 14C from the substrates to cell materials in either D. tertiolecta or C. pyrenoidosa. The contribution of 14C from 14C-glucose to 14CO2 in cell-free system of D. tertiolecta were much higher than in whole cell suspension. It was contrast to C. pyrenoidosa which were showed reduction of 14CO2 production in cell-free systems than whole cell suspensions. When cell-free systems of D. tertiolecta and C. pyrenoidosa were supplied with ATP, NAD, NADP or/and hexokinase, it was remarkably increased production of 14CO2 from the substrates than the control. It was concluded that the low ability of D. tertiolecta to metabolize glucose were caused by the impermeability of the cell membrane to glucose and were not due to deficiencies of enzyme systems concerning glucose metabolism. In the cell-free systems, it seemed to be more active pentose phosphate pathway than glycolytic pathway in D. tertiolecta.

  • PDF

Mitochondrial activity in illuminated leaves of chlorophyll-deficient mutant rice (OsCHLH) seedlings

  • Goh, Chang-Hyo;Satoh, Kouji;Kikuchi, Shoshi;Kim, Seong-Cheol;Ko, Suk-Min;Kang, Hong-Gyu;Jeon, Jong-Seong;Kim, Cheol-Soo;Park, Youn-Il
    • Plant Biotechnology Reports
    • /
    • v.4 no.4
    • /
    • pp.281-291
    • /
    • 2010
  • The rice CHLH gene encodes the $Mg^{2+}$-chelatase H subunit, which is involved in chlorophyll biosynthesis. Growth of the chlorophyll-deficient oschlh mutant is supported by mitochondrial activity. In this study, we investigated the activity of mitochondrial respiration in the illuminated leaves during oschlh seedling development. Growth of mutant plants was enhanced in the presence of 3% sucrose, which may be used by mitochondria to meet cellular energy requirements. ATP content in these mutants was, however, significantly lowered in light conditions. Low cytosolic levels of NADH in illuminated oschlh mutant leaves further indicated the inhibition of mitochondrial metabolism. This down-regulation was particularly evident for oxidative stressresponsive genes in the mutant under light conditions. Hydrogen peroxide levels were higher in oschlh mutant leaves than in wild-type leaves; this increase was largely caused by the impairment of the expression of the antioxidant genes, such as OsAPXl, OsRACl, and OsAOXc in knockout plants. Moreover, treatment of mesophyll protoplasts with ascorbic acid or catalase recovered ATP content in the mutants. Taken together, these results suggest that the light-mediated inhibition of mitochondrial activity leads to stunted growth of CHLH rice seedlings.

Centella asiatica and Asiaticoside Regulate H2O2-induced Cellular Inflammation via Mitochondrial Respiration and the TLR4 Pathway (병풀(Centella asiatica) 및 아시아티코사이드는 미토콘드리아 호흡 및 TLR4 경로를 통해 H2O2 유도 세포염증 조절)

  • Ji, Juree;Nam, Young sun;Kang, Sang Mo
    • Journal of Life Science
    • /
    • v.31 no.4
    • /
    • pp.389-399
    • /
    • 2021
  • This study determined the effects of Centella asiatica leaf on H2O2 induced cell cycle arrest, mitochondrial activity, and proinflammatory cytokine production in human dermal fibroblast (HDF) cells. We used an 80% methanol extract of C. asiatica, its ethyl acetate fraction, and asiaticoside, the major constituent of C. asiatica. The C. asiatica extract, its ethyl acetate fraction, and asiaticoside attenuated G1 cell cycle-arrest and the apoptotic effect caused by H2O2-induced oxidative stress. The cells treated with C. asiatica extract, its ethyl acetate fraction, and asiaticoside secreted lower levels of TNF-α and IL-6. The antioxidant effect of asiaticoside was higher than that of C. asiatica extract and its ethyl acetate fraction. Treatment with C. asiatica extract, its ethyl acetate fraction, and asiaticoside also increased the mitochondrial membrane potential and restored normal mitochondrial morphology. Following H2O2 stress induction, cells treated with C. asiatica extract, its ethyl acetate fraction, and asiaticoside showed increased mitochondrial oxygen consumption rates and decreases in the TLR4-MyD88-TRAF6-p65 pathway activity. These findings suggest that C. asiatica extract, its ethyl acetate fraction, and asiaticoside have antioxidant and anti-inflammatory effects, as well as the ability to control the mitochondrial activities of HDF cells.

Pharmacological Effect of Decursin, Decursinol Angelate, and Decursinol Derived from Angelica gigas Nakai (참당귀(Angelica gigas Nakai) 유래 decursin, decursinol 그리고 decursinol angelate의 약리 효과)

  • Kang, Jae Seon
    • Journal of Life Science
    • /
    • v.31 no.12
    • /
    • pp.1128-1141
    • /
    • 2021
  • 'Angelica' is one of the most traditionally consumed medicinal herbs around Northeast Asia including Korea for treatments of various diseases or health care purposes like hematopoiesis, blood circulation for women, sedative, analgesic, and a tonic medicine etc. Angelica gigas Nakai, a Korean native species of Angelica, is clearly different from the others in containing a high concentration of active ingredients like pyranocoumarines including decursin, decursinol, and decursinol angelate. These compounds have various kinds of positive effects such as anti-tumor activity including the precaution of neutropenia occurred during anticancer drug administration, improvements of metabolic disorders, menstrual irregularity, impairment of renal function, respiration improvement, cognition-enhancement, anti-inflammatory effect, anti-oxidative effect, enhancing fertility and so forth. Thus it implies incredible potentialities in future development for foods and drugs. However, certain purity-related qualities and/or overdose in food products can cause side effects like toxicities; therefore, their safety profiles should also be considered. This review focuses on the positive and negative effects of three pyranocoumarines in Angelica gigas Nakai and some possibilities and considerations for future food and drug products development.

Physiological Responses of Cultured Red Seabream Pagrus major and Olive Flounder Paralichthys olivaceus During Exposure to the Red Tide Dinoflagellate Cochlodinium polykrikoides (적조 Cochlodinium polykrikoides 노출에 따른 양식산 참돔과 넙치의 생리학적 반응 )

  • Hyo-Won, Kim;Hyun Woo, Gil;Young Jae, Choi;Yun Kyung, Shin
    • Journal of Marine Life Science
    • /
    • v.7 no.2
    • /
    • pp.171-179
    • /
    • 2022
  • The present study investigated the survival rate, respiration rate, plasma stress index, and histological changes according to exposure time of cultured red seabream (Pagrus major) and olive flounder (Paralichthys olivaceus) exposed to Cochlodinium polykrikoides red tide. Fish cultured in natural seawater were used as the control group. Cochlodinium polykrikoides density was set to 5,500±200 cells·ml-1 in the experimental groups. All red seabreams died within 1 hour of exposure to red tide, whereas all olive flounders died within 5 hours of exposure. Analysis of physiological response revealed that in red seabream, plasma glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), catalase (CAT), and glutathione peroxidase (GPx) concentrations were increased; plasma glucose and superoxide dismutase (SOD) concentration were decreased. Meanwhile, in olive flounders, plasma cortisol, GOT, and GPT concentrations were increased; plasma glucose concentrations were increased during the first hour of exposure, followed by decrease after 5 hours; and plasma SOD, CAT, and GPx concentrations decreased during the first hour of exposure. Histological analysis revealed structural damage to the gills of both red seabream and olive flounder. In conclusion, the exposure of red seabream and olive flounder to Cochlodinium polykrikoides red tide at the density of 5,500 cells·ml-1 induces oxidative stress, which activates antioxidant defense mechanisms, ultimately leading to liver and gill damage.