Browse > Article
http://dx.doi.org/10.23005/ksmls.2022.7.2.171

Physiological Responses of Cultured Red Seabream Pagrus major and Olive Flounder Paralichthys olivaceus During Exposure to the Red Tide Dinoflagellate Cochlodinium polykrikoides  

Hyo-Won, Kim (Aquaculture Industry Research Division, South Sea Fisheries Research Institute, National Institute of Fisheries Science)
Hyun Woo, Gil (Aquaculture Industry Research Division, South Sea Fisheries Research Institute, National Institute of Fisheries Science)
Young Jae, Choi (Inland Fisheries Research Institute, National Institute of Fisheries Science)
Yun Kyung, Shin (Aquaculture Industry Research Division, South Sea Fisheries Research Institute, National Institute of Fisheries Science)
Publication Information
Journal of Marine Life Science / v.7, no.2, 2022 , pp. 171-179 More about this Journal
Abstract
The present study investigated the survival rate, respiration rate, plasma stress index, and histological changes according to exposure time of cultured red seabream (Pagrus major) and olive flounder (Paralichthys olivaceus) exposed to Cochlodinium polykrikoides red tide. Fish cultured in natural seawater were used as the control group. Cochlodinium polykrikoides density was set to 5,500±200 cells·ml-1 in the experimental groups. All red seabreams died within 1 hour of exposure to red tide, whereas all olive flounders died within 5 hours of exposure. Analysis of physiological response revealed that in red seabream, plasma glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), catalase (CAT), and glutathione peroxidase (GPx) concentrations were increased; plasma glucose and superoxide dismutase (SOD) concentration were decreased. Meanwhile, in olive flounders, plasma cortisol, GOT, and GPT concentrations were increased; plasma glucose concentrations were increased during the first hour of exposure, followed by decrease after 5 hours; and plasma SOD, CAT, and GPx concentrations decreased during the first hour of exposure. Histological analysis revealed structural damage to the gills of both red seabream and olive flounder. In conclusion, the exposure of red seabream and olive flounder to Cochlodinium polykrikoides red tide at the density of 5,500 cells·ml-1 induces oxidative stress, which activates antioxidant defense mechanisms, ultimately leading to liver and gill damage.
Keywords
Cochlodinium polykrikoides; Physiological response; Red tide; Reactive oxygen; Survival rate;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Barton BA, Schreck CB. 1987. Influence of acclimation temperature on interenal and carbohydrate stress responses in juvenile Chinook salmon (Oncorhynchus tshawytscha). Aquaculture 62: 299-310.    DOI
2 Brett JR, Glass NR. 1973. Oxygen consumption and critical swimming speeds of sockeye salmon (Oncorhynchus nerka) in relation to size and temperature. J Fish Res Bd Can 30: 379-287. 
3 Choi HG, Kim PJ, Lee WC, Yun SJ, Kim HG, Lee HJ. 1998. Removal efficiency of Cochlodinium polykrikoides by yellow loess. Korean J Fish Aquat Sci 31: 109-113. 
4 Davis KB, Parker NC. 1990. Physiological stress in striped bass: effect of acclimation temperature. Aquaculture 91: 349-358.    DOI
5 Dalton DA, Langeberg L, Treneman NC. 1993. Correlations between the ascorbate-glutathione pathway and effectiveness in legume root nodules. Physiol Plant 87: 365-370.    DOI
6 Huang CY, Chen JC. 2002. Effects on acid-base blance, methaemoglobinemia and nitrogen excretion of European eel after exposure to elevated ambient nitrite. J Fish Biol 61: 712-725.    DOI
7 Imai H, Nakagawa Y. 2003. Biological significance of phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) in mammalian cells. Free Radic Biol Med 34: 145-169.    DOI
8 Kim CS, Lee SG, Lee CK, Kim HG, Jung J. 1999. Reactive oxygen species as causative agents in the ichthyotoxicity of the red tide dinoflagellate Cochlodinium polykrikoides. J Plankton Res 21: 2105-2115.    DOI
9 Kim CS, Bae HM, Yun SJ, Cho YC, Kim HG. 2000a. Ichthyotoxicity of a harmful dinoflagellate Cochlodinium polykrikoides: aspect of hematological responses of fish exposed to algal blooms. J Fish Sci Tech 3: 111-117. 
10 Kim CS, Lee SG, Kim HG. 2000b. Biochemical responses of fish exposed to a harmful dinoflagellate Cochlodinium polykrikoides. J Exp Mar Biol Ecol 254: 131-141.    DOI
11 Kim CS, Lee SG, Kim HG, Lee JS. 2001a. Screening for toxic compounds in the red tide Cochlodinium polykrikoides: is it toxic plankton?. Algae 16: 457-462. 
12 Kim HC, Lee CK, Lee SG, Kim HG, Par CK. 2001b. Physico-chemical factors on the growth of Cochlodinium polykrikoides and nutrient utilization. Korean J Fish Aquat Sci 34: 445-456. 
13 Kim HG, Jung CS, Lim WA, Lee CK, Kim SY, Youn SH, Cho YC, Lee SG. 2001c. The spatio-temporal progress of Cochlodinium polykrikoides blooms in the coastal waters of Korea. Korean J Fish Aquat Sci 34: 691-696. 
14 Kim DK, Oda T, Muramatsu T, Kim D, Matsuyama Y, Honjo T. 2002. Possible factors responsible for the toxicity of Cochlodinium polykrikoides, a red tide phytoplankton. Comp Biochem Physiol Part C 132: 415-423.    DOI
15 Kim CJ, Kim HG, Kim CH, Oh HM. 2007. Life cycle of the ichthyotoxic dinoflagellate Cochlodinium polykrikoides in Korean coastal waters. Harmful Algae 6: 104-111.    DOI
16 Kim WJ, Lee JY, Shin YK, Won KM. 2018. Growth and blood characteristics of red sea bream Pagrus major by starvation and stocking density during red tide. J Ichthyol 30: 194-204.    DOI
17 Lee YS, Park YT, kim YS, kim KY, Park JS, Go WJ, Jo YJ, Park SY. 2001. Countermeasure and outbreak mechanism of Cochlodinium polykrikoides red tide 1. Environmental characteristics on outbreak and disappearance of C. polykrikoides bloom. J Korean Soc Oceanogr 6: 259-264. 
18 Lee CH, Han SW, Hur JW, Lee JY. 2008. Oxygen consumption, operculum movement number and ammonia excretion of cultured Tilapia (Oreochromis mossambicus) by salinity changes. J Environ Biol 26: 138-144. 
19 Lee JS. 1996. Bioactive components from red tide plankton, Cochlodinium polykrikoides. Korean J Fish Aquat Sci 29: 165-173. 
20 Lee SG, Kim HG, Cho ES, Lee CK. 2003. Mortality of fishes and shellfishes to harmful algal blooms. J Fish Sci Tech 6: 160-163. 
21 Lim WA, Go WJ, Kim KY, Park JW. 2020. Variation in harmful algal blooms in Korean coastal waters since 1970. J Korean Soc Mar Environ Saf 26: 523-530.    DOI
22 Madeira D, Narciso L, Cabral HN, Vinagre C, Diniz MS. 2013. Influence of temperature in thermal and oxidative stress responses in estuarine fish. Cop Biochem Physiol Part A 166: 237-243.    DOI
23 Mommsen TP, Vijayan MM, Moon TW. 1999. Cortisol in teleosts: dynamic, mechnisms of action, and metablic regulation. Rev Fish Biol Fish 9: 211-268.    DOI
24 NIFS. 2021. Harmful algal blooms in the Korean coastal waters in 2020. National Institute of Fisheries Science 21-23.
25 Oh SJ, Yoon YH, Kim DI, Shimasaki Y, Oshima Y, Honjo T. 2006. Effects of light quantity and quality on the growth of the harmful dinoflagellate, Cochlodinium polykrikoides Margalef (Dinophyceae). Algae 21: 311-316.    DOI
26 So SY, Hur JW, Lee JY. 2008. Variation of oxygen consumption, Operculum movement number and hemoglobin by water temperature change in Rainbow trout Oncorhynchus mykiss. J Ichthyol 20: 239-247. 
27 Onoue Y. 1989. Separation of toxins from harmful red tides occurring along the coast of Kagoshima Prefecture. Okaichi T, Anderson DM, Nemoto T (ed.). In: Red tides: Biology, Environmental Science, and Toxicology. Elsevier Science Publ., New York, pp 371-374. 
28 Shim JM, Lee C, Lee YH, Kim BS. 2009. Response of oxygen consumption and gill tissue of fish exposed to red tid organism Cochlodinium polykrikoides. J Environ Sci 18: 1283-1289. 
29 Shin YK, Nam SE, Kim WJ, Seo DY, Kim YJ, Rhee JS. 2019. Red tide dinoflagellate Cochlodinium polykrikoides induces significant oxidative stress and DNA damage in the gill tissue of the Red sea bream Pagrus major. Harmful Algae 86: 37-45.    DOI
30 Sohn JH. 2005. The effects of ammonium ion and salts on the killing of red tides organism; Cochlodinium polykrikoides and Gymnodinium sanguieum. J Life Sci 15: 578-583.    DOI
31 Whyte JNC, Haigh N, Gnther NG, Keddy LJ. 2001. First record of blooms of Cochlodinium sp. (Gymnodiniales, Dinophyceae) causing mortality to aquacultured salmon on the west coast of Canada. Phycologia 40: 298-304.    DOI
32 Withey KG, Saunders RL. 1973. Effect of reciprocal photoperiod regime on standard rate of oxygen consumption of postsmolt Atlantic salmon (Salmo salar). J Fish Res Bd Can 30: 1898-1900.    DOI
33 Yuki K, Yoshimatsu S. 1989. Two fish-killing species of Cochlodinium from Harima-Nada, Seto Inland Sea, Japan. Okaichi T, Anderson DM, Nemoto T (ed.). In: Red tides: Biology, Environmental Science, and Toxicology. Elsevier Science Publ., New York, pp 451-454.