DOI QR코드

DOI QR Code

Targeting Cancer Metabolism - Revisiting the Warburg Effects

  • Tran, Quangdon (Department of Pharmacology and Medical Science, Metabolic Diseases and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University) ;
  • Lee, Hyunji (Department of Pharmacology and Medical Science, Metabolic Diseases and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University) ;
  • Park, Jisoo (Department of Pharmacology and Medical Science, Metabolic Diseases and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University) ;
  • Kim, Seon-Hwan (Department of Neurosurgery, Institute for Cancer Research, College of Medicine, Chungnam National University) ;
  • Park, Jongsun (Department of Pharmacology and Medical Science, Metabolic Diseases and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University)
  • 투고 : 2016.03.15
  • 심사 : 2016.05.20
  • 발행 : 2016.07.15

초록

After more than half of century since the Warburg effect was described, this atypical metabolism has been standing true for almost every type of cancer, exhibiting higher glycolysis and lactate metabolism and defective mitochondrial ATP production. This phenomenon had attracted many scientists to the problem of elucidating the mechanism of, and reason for, this effect. Several models based on oncogenic studies have been proposed, such as the accumulation of mitochondrial gene mutations, the switch from oxidative phosphorylation respiration to glycolysis, the enhancement of lactate metabolism, and the alteration of glycolytic genes. Whether the Warburg phenomenon is the consequence of genetic dysregulation in cancer or the cause of cancer remains unknown. Moreover, the exact reasons and physiological values of this peculiar metabolism in cancer remain unclear. Although there are some pharmacological compounds, such as 2-deoxy-D-glucose, dichloroacetic acid, and 3-bromopyruvate, therapeutic strategies, including diet, have been developed based on targeting the Warburg effect. In this review, we will revisit the Warburg effect to determine how much scientists currently understand about this phenomenon and how we can treat the cancer based on targeting metabolism.

키워드

참고문헌

  1. Warburg, O. (1915) Notizen zur Entwickelungsphysiologie des Seeigeleies. Arch. f. d. ges. Physiol., 160, 324-332. https://doi.org/10.1007/BF01680970
  2. Warburg, O. (1923) Versuche an uberlebendem Carcinom-Gewebe (Methoden). Biochem. Zeitschr., 142, 317-333.
  3. Warburg, O. (1924) Verbesserte Methode zur Messung der Atmung und Glykolyse. Biochem. Zeitschr., 152, 51-63.
  4. Warburg, O. (1956) On the origin of cancer cells. Science, 123, 309-314. https://doi.org/10.1126/science.123.3191.309
  5. Warburg, O. (1956) On respiratory impairment in cancer cells. Science, 124, 269-270.
  6. Chance, B. and Castor, L.N. (1952) Some patterns of the respiratory pigments of ascites tumors of mice. Science, 116, 200-202. https://doi.org/10.1126/science.116.3008.200
  7. Weinhouse, S. (1956) On respiratory impairment in cancer cells. Science, 124, 267-269. https://doi.org/10.1126/science.124.3215.267
  8. Hanahan, D. and Weinberg, R.A. (2000) The hallmarks of cancer. Cell, 100, 57-70. https://doi.org/10.1016/S0092-8674(00)81683-9
  9. Yeung, S.J., Pan, J. and Lee, M.H. (2008) Roles of p53, MYC and HIF-1 in regulating glycolysis - the seventh hallmark of cancer. Cell. Mol. Life Sci., 65, 3981-3999. https://doi.org/10.1007/s00018-008-8224-x
  10. Gatenby, R.A. and Gillies, R.J. (2004) Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer, 4, 891-899. https://doi.org/10.1038/nrc1478
  11. Brand, K.A. and Hermfisse, U. (1997) Aerobic glycolysis by proliferating cells: a protective strategy against reactive oxygen species. FASEB J., 11, 388-395. https://doi.org/10.1096/fasebj.11.5.9141507
  12. Spitz, D.R., Sim, J.E., Ridnour, L.A., Galoforo, S.S. and Lee, Y.J. (2000) Glucose deprivation-induced oxidative stress in human tumor cells. A fundamental defect in metabolism? Ann. N. Y. Acad. Sci., 899, 349-362.
  13. Elf, S.E. and Chen, J. (2014) Targeting glucose metabolism in patients with cancer. Cancer, 120, 774-780. https://doi.org/10.1002/cncr.28501
  14. Hamanaka, R.B. and Chandel, N.S. (2009) Mitochondrial reactive oxygen species regulate hypoxic signaling. Curr. Opin. Cell Biol., 21, 894-899. https://doi.org/10.1016/j.ceb.2009.08.005
  15. Hatefi, Y. (1985) The mitochondrial electron transport and oxidative phosphorylation system. Annu. Rev. Biochem., 54, 1015-1069. https://doi.org/10.1146/annurev.bi.54.070185.005055
  16. Boguski, M.S., Lowe, T.M. and Tolstoshev, C.M. (1993) dbEST--database for "expressed sequence tags". Nat. Genet., 4, 332-333. https://doi.org/10.1038/ng0893-332
  17. Altenberg, B. and Greulich, K.O. (2004) Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes. Genomics, 84, 1014-1020. https://doi.org/10.1016/j.ygeno.2004.08.010
  18. Nachmansohn, D. (1979) German-Jewish Pioneers in Science, Springer, New York, pp. 1900-1933.
  19. Koppenol, W.H., Bounds, P.L. and Dang, C.V. (2011) Otto Warburg's contributions to current concepts of cancer metabolism. Nat. Rev. Cancer, 11, 325-337. https://doi.org/10.1038/nrc3038
  20. Parsons, D.W., Jones, S., Zhang, X., Lin, J.C., Leary, R.J., Angenendt, P., Mankoo, P., Carter, H., Siu, I.M., Gallia, G.L., Olivi, A., McLendon, R., Rasheed, B.A., Keir, S., Nikolskaya, T., Nikolsky, Y., Busam, D.A., Tekleab, H., Diaz, L.A., Jr., Hartigan, J., Smith, D.R., Strausberg, R.L., Marie, S.K., Shinjo, S.M., Yan, H., Riggins, G.J., Bigner, D.D., Karchin, R., Papadopoulos, N., Parmigiani, G., Vogelstein, B., Velculescu, V.E. and Kinzler, K.W. (2008) An integrated genomic analysis of human glioblastoma multiforme. Science, 321, 1807-1812. https://doi.org/10.1126/science.1164382
  21. Bayley, J.P. and Devilee, P. (2010) Warburg tumours and the mechanisms of mitochondrial tumour suppressor genes. Barking up the right tree? Curr. Opin. Genet. Dev., 20, 324-329. https://doi.org/10.1016/j.gde.2010.02.008
  22. Baysal, B.E., Willett-Brozick, J.E., Lawrence, E.C., Drovdlic, C.M., Savul, S.A., McLeod, D.R., Yee, H.A., Brackmann, D.E., Slattery, W.H., 3rd, Myers, E.N., Ferrell, R.E. and Rubinstein, W.S. (2002) Prevalence of SDHB, SDHC, and SDHD germline mutations in clinic patients with head and neck paragangliomas. J. Med. Genet., 39, 178-183. https://doi.org/10.1136/jmg.39.3.178
  23. Baysal, B.E. (2007) A recurrent stop-codon mutation in succinate dehydrogenase subunit B gene in normal peripheral blood and childhood T-cell acute leukemia. PLoS ONE, 2, e436. https://doi.org/10.1371/journal.pone.0000436
  24. Tomlinson, I.P., Alam, N.A., Rowan, A.J., Barclay, E., Jaeger, E.E., Kelsell, D., Leigh, I., Gorman, P., Lamlum, H., Rahman, S., Roylance, R.R., Olpin, S., Bevan, S., Barker, K., Hearle, N., Houlston, R.S., Kiuru, M., Lehtonen, R., Karhu, A., Vilkki, S., Laiho, P., Eklund, C., Vierimaa, O., Aittomaki, K., Hietala, M., Sistonen, P., Paetau, A., Salovaara, R., Herva, R., Launonen, V., Aaltonen, L.A. and Multiple Leiomyoma Consortium (2002) Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat. Genet., 30, 406-410. https://doi.org/10.1038/ng849
  25. Semenza, G.L. (2012) Hypoxia-inducible factors in physiology and medicine. Cell, 148, 399-408. https://doi.org/10.1016/j.cell.2012.01.021
  26. Martin-Puig, S., Temes, E., Olmos, G., Jones, D.R., Aragones, J. and Landazuri, M.O. (2004) Role of iron (II)-2-oxoglutarate-dependent dioxygenases in the generation of hypoxia-induced phosphatidic acid through HIF-1/2 and von Hippel-Lindau-independent mechanisms. J. Biol. Chem., 279, 9504-9511. https://doi.org/10.1074/jbc.M310658200
  27. Chen, H. and Costa, M. (2009) Iron- and 2-oxoglutaratedependent dioxygenases: an emerging group of molecular targets for nickel toxicity and carcinogenicity. Biometals, 22, 191-196. https://doi.org/10.1007/s10534-008-9190-3
  28. Isaacs, J.S., Jung, Y.J., Mole, D.R., Lee, S., Torres-Cabala, C., Chung, Y.L., Merino, M., Trepel, J., Zbar, B., Toro, J., Ratcliffe, P.J., Linehan, W.M. and Neckers, L. (2005) HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability. Cancer Cell, 8, 143-153. https://doi.org/10.1016/j.ccr.2005.06.017
  29. King, A., Selak, M.A. and Gottlieb, E. (2006) Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer. Oncogene, 25, 4675-4682. https://doi.org/10.1038/sj.onc.1209594
  30. Goda, N. and Kanai, M. (2012) Hypoxia-inducible factors and their roles in energy metabolism. Int. J. Hematol., 95, 457-463. https://doi.org/10.1007/s12185-012-1069-y
  31. Kim, J.W., Tchernyshyov, I., Semenza, G.L. and Dang, C.V. (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab., 3, 177-185. https://doi.org/10.1016/j.cmet.2006.02.002
  32. Semenza, G.L., Roth, P.H., Fang, H.M. and Wang, G.L. (1994) Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J. Biol. Chem., 269, 23757-23763.
  33. Gordan, J.D., Thompson, C.B. and Simon, M.C. (2007) HIF and c-Myc: sibling rivals for control of cancer cell metabolism and proliferation. Cancer Cell, 12, 108-113. https://doi.org/10.1016/j.ccr.2007.07.006
  34. Selak, M.A., Armour, S.M., MacKenzie, E.D., Boulahbel, H., Watson, D.G., Mansfield, K.D., Pan, Y., Simon, M.C., Thompson, C.B. and Gottlieb, E. (2005) Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell, 7, 77-85. https://doi.org/10.1016/j.ccr.2004.11.022
  35. Xu, W., Yang, H., Liu, Y., Yang, Y., Wang, P., Kim, S.H., Ito, S., Yang, C., Wang, P., Xiao, M.T., Liu, L.X., Jiang, W.Q., Liu, J., Zhang, J.Y., Wang, B., Frye, S., Zhang, Y., Xu, Y.H., Lei, Q.Y., Guan, K.L., Zhao, S.M. and Xiong, Y. (2011) Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell, 19, 17-30. https://doi.org/10.1016/j.ccr.2010.12.014
  36. Matoba, S., Kang, J.G., Patino, W.D., Wragg, A., Boehm, M., Gavrilova, O., Hurley, P.J., Bunz, F. and Hwang, P.M. (2006) p53 regulates mitochondrial respiration. Science, 312, 1650-1653. https://doi.org/10.1126/science.1126863
  37. Capuano, F., Guerrieri, F. and Papa, S. (1997) Oxidative phosphorylation enzymes in normal and neoplastic cell growth. J. Bioenerg. Biomembr., 29, 379-384. https://doi.org/10.1023/A:1022402915431
  38. Lopez-Rios, F., Sanchez-Arago, M., Garcia-Garcia, E., Ortega, A.D., Berrendero, J.R., Pozo-Rodriguez, F., Lopez-Encuentra, A., Ballestin, C. and Cuezva, J.M. (2007) Loss of the mitochondrial bioenergetic capacity underlies the glucose avidity of carcinomas. Cancer Res., 67, 9013-9017. https://doi.org/10.1158/0008-5472.CAN-07-1678
  39. Reitman, Z.J. and Yan, H. (2010) Isocitrate dehydrogenase 1 and 2 mutations in cancer: alterations at a crossroads of cellular metabolism. J. Natl. Cancer Inst., 102, 932-941. https://doi.org/10.1093/jnci/djq187
  40. Gross, S., Cairns, R.A., Minden, M.D., Driggers, E.M., Bittinger, M.A., Jang, H.G., Sasaki, M., Jin, S., Schenkein, D.P., Su, S.M., Dang, L., Fantin, V.R. and Mak, T.W. (2010) Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations. J. Exp. Med., 207, 339-344. https://doi.org/10.1084/jem.20092506
  41. Zhao, S., Lin, Y., Xu, W., Jiang, W., Zha, Z., Wang, P., Yu, W., Li, Z., Gong, L., Peng, Y., Ding, J., Lei, Q., Guan, K.L. and Xiong, Y. (2009) Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1${\alpha}$. Science, 324, 261-265. https://doi.org/10.1126/science.1170944
  42. Cavalli, L.R., Varella-Garcia, M. and Liang, B.C. (1997) Diminished tumorigenic phenotype after depletion of mitochondrial DNA. Cell Growth Differ., 8, 1189-1198.
  43. Tan, A.S., Baty, J.W., Dong, L.F., Bezawork-Geleta, A., Endaya, B., Goodwin, J., Bajzikova, M., Kovarova, J., Peterka, M., Yan, B., Pesdar, E.A., Sobol, M., Filimonenko, A., Stuart, S., Vondrusova, M., Kluckova, K., Sachaphibulkij, K., Rohlena, J., Hozak, P., Truksa, J., Eccles, D., Haupt, L.M., Griffiths, L.R., Neuzil, J. and Berridge, M.V. (2015) Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metab., 21, 81-94. https://doi.org/10.1016/j.cmet.2014.12.003
  44. Okar, D.A., Manzano, A., Navarro-Sabate, A., Riera, L., Bartrons, R. and Lange, A.J. (2001) PFK-2/FBPase-2: maker and breaker of the essential biofactor fructose-2,6-bisphosphate. Trends Biochem. Sci., 26, 30-35. https://doi.org/10.1016/S0968-0004(00)01699-6
  45. Bensaad, K., Tsuruta, A., Selak, M.A., Vidal, M.N., Nakano, K., Bartrons, R., Gottlieb, E. and Vousden, K.H. (2006) TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell, 126, 107-120. https://doi.org/10.1016/j.cell.2006.05.036
  46. Green, D.R. and Chipuk, J.E. (2006) p53 and metabolism: Inside the TIGAR. Cell, 126, 30-32. https://doi.org/10.1016/j.cell.2006.06.032
  47. Shim, H., Dolde, C., Lewis, B.C., Wu, C.S., Dang, G., Jungmann, R.A., Dalla-Favera, R. and Dang, C.V. (1997) c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc. Natl. Acad. Sci. U.S.A., 94, 6658-6663. https://doi.org/10.1073/pnas.94.13.6658
  48. Fantin, V.R., St-Pierre, J. and Leder, P. (2006) Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell, 9, 425-434. https://doi.org/10.1016/j.ccr.2006.04.023
  49. Cardone, R.A., Casavola, V. and Reshkin, S.J. (2005) The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis. Nat. Rev. Cancer, 5, 786-795. https://doi.org/10.1038/nrc1713
  50. Opavsky, R., Pastorekova, S., Zelnik, V., Gibadulinova, A., Stanbridge, E.J., Zavada, J., Kettmann, R. and Pastorek, J. (1996) Human MN/CA9 gene, a novel member of the carbonic anhydrase family: structure and exon to protein domain relationships. Genomics, 33, 480-487. https://doi.org/10.1006/geno.1996.0223
  51. Ivanov, S., Liao, S.Y., Ivanova, A., Danilkovitch-Miagkova, A., Tarasova, N., Weirich, G., Merrill, M.J., Proescholdt, M.A., Oldfield, E.H., Lee, J., Zavada, J., Waheed, A., Sly, W., Lerman, M.I. and Stanbridge, E.J. (2001) Expression of hypoxia-inducible cell-surface transmembrane carbonic anhydrases in human cancer. Am. J. Pathol., 158, 905-919. https://doi.org/10.1016/S0002-9440(10)64038-2
  52. Robertson, N., Potter, C. and Harris, A.L. (2004) Role of carbonic anhydrase IX in human tumor cell growth, survival, and invasion. Cancer Res., 64, 6160-6165. https://doi.org/10.1158/0008-5472.CAN-03-2224
  53. Secomb, T.W., Hsu, R., Dewhirst, M.W., Klitzman, B. and Gross, J.F. (1993) Analysis of oxygen transport to tumor tissue by microvascular networks. Int. J. Radiat. Oncol. Biol. Phys., 25, 481-489. https://doi.org/10.1016/0360-3016(93)90070-C
  54. Heldin, C.H., Rubin, K., Pietras, K. and Ostman, A. (2004) High interstitial fluid pressure - an obstacle in cancer therapy. Nat. Rev. Cancer, 4, 806-813. https://doi.org/10.1038/nrc1456
  55. Vaupel, P., Fortmeyer, H.P., Runkel, S. and Kallinowski, F. (1987) Blood flow, oxygen consumption, and tissue oxygenation of human breast cancer xenografts in nude rats. Cancer Res., 47, 3496-3503.
  56. Minchenko, O., Opentanova, I. and Caro, J. (2003) Hypoxic regulation of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene family (PFKFB-1-4) expression in vivo. FEBS Lett., 554, 264-270. https://doi.org/10.1016/S0014-5793(03)01179-7
  57. Minchenko, O.H., Ogura, T., Opentanova, I.L., Minchenko, D.O. and Esumi, H. (2005) Splice isoform of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-4: expression and hypoxic regulation. Mol. Cell. Biochem., 280, 227-234. https://doi.org/10.1007/s11010-005-8009-6
  58. Acker, T. and Plate, K.H. (2002) A role for hypoxia and hypoxia-inducible transcription factors in tumor physiology. J. Mol. Med., 80, 562-575. https://doi.org/10.1007/s00109-002-0355-1
  59. Semenza, G.L. (2000) Hypoxia, clonal selection, and the role of HIF-1 in tumor progression. Crit. Rev. Biochem. Mol. Biol., 35, 71-103. https://doi.org/10.1080/10409230091169186
  60. Barthel, A., Okino, S.T., Liao, J., Nakatani, K., Li, J., Whitlock, J.P., Jr. and Roth, R.A. (1999) Regulation of GLUT1 gene transcription by the serine/threonine kinase Akt1. J. Biol. Chem., 274, 20281-20286. https://doi.org/10.1074/jbc.274.29.20281
  61. Taha, C., Liu, Z., Jin, J., Al-Hasani, H., Sonenberg, N. and Klip, A. (1999) Opposite translational control of GLUT1 and GLUT4 glucose transporter mRNAs in response to insulin. Role of mammalian target of rapamycin, protein kinase b, and phosphatidylinositol 3-kinase in GLUT1 mRNA translation. J. Biol. Chem., 274, 33085-33091. https://doi.org/10.1074/jbc.274.46.33085
  62. Majewski, N., Nogueira, V., Bhaskar, P., Coy, P.E., Skeen, J.E., Gottlob, K., Chandel, N.S., Thompson, C.B., Robey, R.B. and Hay, N. (2004) Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Mol. Cell, 16, 819-830. https://doi.org/10.1016/j.molcel.2004.11.014
  63. Majewski, N., Nogueira, V., Robey, R.B. and Hay, N. (2004) Akt inhibits apoptosis downstream of BID cleavage via a glucose-dependent mechanism involving mitochondrial hexokinases. Mol. Cell. Biol., 24, 730-740. https://doi.org/10.1128/MCB.24.2.730-740.2004
  64. Bauer, D.E., Hatzivassiliou, G., Zhao, F., Andreadis, C. and Thompson, C.B. (2005) ATP citrate lyase is an important component of cell growth and transformation. Oncogene, 24, 6314-6322. https://doi.org/10.1038/sj.onc.1208773
  65. Deberardinis, R.J., Lum, J.J. and Thompson, C.B. (2006) Phosphatidylinositol 3-kinase-dependent modulation of carnitine palmitoyltransferase 1A expression regulates lipid metabolism during hematopoietic cell growth. J. Biol. Chem., 281, 37372-37380. https://doi.org/10.1074/jbc.M608372200
  66. Albanell, J., Dalmases, A., Rovira, A. and Rojo, F. (2007) mTOR signalling in human cancer. Clin. Transl. Oncol., 9, 484-493. https://doi.org/10.1007/s12094-007-0092-6
  67. Chiang, G.G. and Abraham, R.T. (2007) Targeting the mTOR signaling network in cancer. Trends Mol. Med., 13, 433-442. https://doi.org/10.1016/j.molmed.2007.08.001
  68. Martin, D.E. and Hall, M.N. (2005) The expanding TOR signaling network. Curr. Opin. Cell Biol., 17, 158-166. https://doi.org/10.1016/j.ceb.2005.02.008
  69. Hudson, C.C., Liu, M., Chiang, G.G., Otterness, D.M., Loomis, D.C., Kaper, F., Giaccia, A.J. and Abraham, R.T. (2002) Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Mol. Cell. Biol., 22, 7004-7014. https://doi.org/10.1128/MCB.22.20.7004-7014.2002
  70. Mathupala, S.P., Rempel, A. and Pedersen, P.L. (1997) Aberrant glycolytic metabolism of cancer cells: a remarkable coordination of genetic, transcriptional, post-translational, and mutational events that lead to a critical role for type II hexokinase. J. Bioenerg. Biomembr., 29, 339-343. https://doi.org/10.1023/A:1022494613613
  71. Dang, C.V., Lewis, B.C., Dolde, C., Dang, G. and Shim, H. (1997) Oncogenes in tumor metabolism, tumorigenesis, and apoptosis. J. Bioenerg. Biomembr., 29, 345-354. https://doi.org/10.1023/A:1022446730452
  72. Dang, C.V. and Semenza, G.L. (1999) Oncogenic alterations of metabolism. Trends Biochem. Sci., 24, 68-72. https://doi.org/10.1016/S0968-0004(98)01344-9
  73. Lu, H., Forbes, R.A. and Verma, A. (2002) Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J. Biol. Chem., 277, 23111-23115. https://doi.org/10.1074/jbc.M202487200
  74. Kim, J.W., Gao, P., Liu, Y.C., Semenza, G.L. and Dang, C.V. (2007) Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol. Cell. Biol., 27, 7381-7393. https://doi.org/10.1128/MCB.00440-07
  75. Schwartzenberg-Bar-Yoseph, F., Armoni, M. and Karnieli, E. (2004) The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res., 64, 2627-2633. https://doi.org/10.1158/0008-5472.CAN-03-0846
  76. Kawauchi, K., Araki, K., Tobiume, K. and Tanaka, N. (2008) p53 regulates glucose metabolism through an IKK-NF-${\kappa}$B pathway and inhibits cell transformation. Nat. Cell Biol., 10, 611-618. https://doi.org/10.1038/ncb1724
  77. Kondoh, H., Lleonart, M.E., Gil, J., Wang, J., Degan, P., Peters, G., Martinez, D., Carnero, A. and Beach, D. (2005) Glycolytic enzymes can modulate cellular life span. Cancer Res., 65, 177-185.
  78. Beckert, S., Farrahi, F., Aslam, R.S., Scheuenstuhl, H., Konigsrainer, A., Hussain, M.Z. and Hunt, T.K. (2006) Lactate stimulates endothelial cell migration. Wound Repair Regen., 14, 321-324. https://doi.org/10.1111/j.1743-6109.2006.00127.x
  79. Vegran, F., Boidot, R., Michiels, C., Sonveaux, P. and Feron, O. (2011) Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-${\kappa}$B/IL-8 pathway that drives tumor angiogenesis. Cancer Res., 71, 2550-2560. https://doi.org/10.1158/0008-5472.CAN-10-2828
  80. Draoui, N. and Feron, O. (2011) Lactate shuttles at a glance: from physiological paradigms to anti-cancer treatments. Dis. Model. Mech., 4, 727-732. https://doi.org/10.1242/dmm.007724
  81. Hirschhaeuser, F., Sattler, U.G. and Mueller-Klieser, W. (2011) Lactate: a metabolic key player in cancer. Cancer Res., 71, 6921-6925. https://doi.org/10.1158/0008-5472.CAN-11-1457
  82. Kurtoglu, M., Maher, J.C. and Lampidis, T.J. (2007) Differential toxic mechanisms of 2-deoxy-D-glucose versus 2-fluorodeoxy-D-glucose in hypoxic and normoxic tumor cells. Antioxid. Redox Signal., 9, 1383-1390. https://doi.org/10.1089/ars.2007.1714
  83. Bandugula, V.R. and N, R.P. (2013) 2-Deoxy-D-glucose and ferulic acid modulates radiation response signaling in nonsmall cell lung cancer cells. Tumour Biol., 34, 251-259. https://doi.org/10.1007/s13277-012-0545-6
  84. Giammarioli, A.M., Gambardella, L., Barbati, C., Pietraforte, D., Tinari, A., Alberton, M., Gnessi, L., Griffin, R.J., Minetti, M. and Malorni, W. (2012) Differential effects of the glycolysis inhibitor 2-deoxy-D-glucose on the activity of pro-apoptotic agents in metastatic melanoma cells, and induction of a cytoprotective autophagic response. Int. J. Cancer, 131, E337-E347. https://doi.org/10.1002/ijc.26420
  85. Ralser, M., Wamelink, M.M., Struys, E.A., Joppich, C., Krobitsch, S., Jakobs, C. and Lehrach, H. (2008) A catabolic block does not sufficiently explain how 2-deoxy-D-glucose inhibits cell growth. Proc. Natl. Acad. Sci. U.S.A., 105, 17807-17811. https://doi.org/10.1073/pnas.0803090105
  86. Urakami, K., Zangiacomi, V., Yamaguchi, K. and Kusuhara, M. (2013) Impact of 2-deoxy-D-glucose on the target metabolome profile of a human endometrial cancer cell line. Biomed. Res., 34, 221-229. https://doi.org/10.2220/biomedres.34.221
  87. Robinson, G.L., Dinsdale, D., Macfarlane, M. and Cain, K. (2012) Switching from aerobic glycolysis to oxidative phosphorylation modulates the sensitivity of mantle cell lymphoma cells to TRAIL. Oncogene, 31, 4996-5006. https://doi.org/10.1038/onc.2012.13
  88. Zagorodna, O., Martin, S.M., Rutkowski, D.T., Kuwana, T., Spitz, D.R. and Knudson, C.M. (2012) 2-Deoxyglucose-induced toxicity is regulated by Bcl-2 family members and is enhanced by antagonizing Bcl-2 in lymphoma cell lines. Oncogene, 31, 2738-2749. https://doi.org/10.1038/onc.2011.454
  89. Golding, J.P., Wardhaugh, T., Patrick, L., Turner, M., Phillips, J.B., Bruce, J.I. and Kimani, S.G. (2013) Targeting tumour energy metabolism potentiates the cytotoxicity of 5-aminolevulinic acid photodynamic therapy. Br. J. Cancer, 109, 976-982. https://doi.org/10.1038/bjc.2013.391
  90. Kim, S.M., Yun, M.R., Hong, Y.K., Solca, F., Kim, J.H., Kim, H.J. and Cho, B.C. (2013) Glycolysis inhibition sensitizes non-small cell lung cancer with T790M mutation to irreversible EGFR inhibitors via translational suppression of Mcl-1 by AMPK activation. Mol. Cancer Ther., 12, 2145-2156. https://doi.org/10.1158/1535-7163.MCT-12-1188
  91. Wood, T.E., Dalili, S., Simpson, C.D., Hurren, R., Mao, X., Saiz, F.S., Gronda, M., Eberhard, Y., Minden, M.D., Bilan, P.J., Klip, A., Batey, R.A. and Schimmer, A.D. (2008) A novel inhibitor of glucose uptake sensitizes cells to FAS-induced cell death. Mol. Cancer Ther., 7, 3546-3555. https://doi.org/10.1158/1535-7163.MCT-08-0569
  92. Yamaguchi, R., Janssen, E., Perkins, G., Ellisman, M., Kitada, S. and Reed, J.C. (2011) Efficient elimination of cancer cells by deoxyglucose-ABT-263/737 combination therapy. PLoS ONE, 6, e24102. https://doi.org/10.1371/journal.pone.0024102
  93. Maher, J.C., Wangpaichitr, M., Savaraj, N., Kurtoglu, M. and Lampidis, T.J. (2007) Hypoxia-inducible factor-1 confers resistance to the glycolytic inhibitor 2-deoxy-D-glucose. Mol. Cancer Ther., 6, 732-741.
  94. Raez, L.E., Papadopoulos, K., Ricart, A.D., Chiorean, E.G., Dipaola, R.S., Stein, M.N., Rocha Lima, C.M., Schlesselman, J.J., Tolba, K., Langmuir, V.K., Kroll, S., Jung, D.T., Kurtoglu, M., Rosenblatt, J. and Lampidis, T.J. (2013) A phase I dose-escalation trial of 2-deoxy-D-glucose alone or combined with docetaxel in patients with advanced solid tumors. Cancer Chemother. Pharmacol., 71, 523-530. https://doi.org/10.1007/s00280-012-2045-1
  95. Stacpoole, P.W. (1969) Review of the pharmacologic and therapeutic effects of diisopropylammonium dichloroacetate (DIPA). J. Clin. Pharmacol. J. New Drugs, 9, 282-291.
  96. Stacpoole, P.W. and Felts, J.M. (1970) Diisopropylammonium dichloroacetate (DIPA) and sodium dichloracetate (DCA): effect on glucose and fat metabolism in normal and diabetic tissue. Metabolism, 19, 71-78. https://doi.org/10.1016/0026-0495(70)90119-8
  97. Whitehouse, S. and Randle, P.J. (1973) Activation of pyruvate dehydrogenase in perfused rat heart by dichloroacetate (Short Communication). Biochem. J., 134, 651-653. https://doi.org/10.1042/bj1340651
  98. Stacpoole, P.W., Moore, G.W. and Kornhauser, D.M. (1978) Metabolic effects of dichloroacetate in patients with diabetes mellitus and hyperlipoproteinemia. N. Engl. J. Med., 298, 526-530. https://doi.org/10.1056/NEJM197803092981002
  99. Stacpoole, P.W. (1989) The pharmacology of dichloroacetate. Metabolism, 38, 1124-1144. https://doi.org/10.1016/0026-0495(89)90051-6
  100. Bersin, R.M. and Stacpoole, P.W. (1997) Dichloroacetate as metabolic therapy for myocardial ischemia and failure. Am. Heart J., 134, 841-855. https://doi.org/10.1016/S0002-8703(97)80007-5
  101. Stacpoole, P.W., Harman, E.M., Curry, S.H., Baumgartner, T.G. and Misbin, R.I. (1983) Treatment of lactic acidosis with dichloroacetate. N. Engl. J. Med., 309, 390-396. https://doi.org/10.1056/NEJM198308183090702
  102. Stacpoole, P.W., Wright, E.C., Baumgartner, T.G., Bersin, R.M., Buchalter, S., Curry, S.H., Duncan, C.A., Harman, E.M., Henderson, G.N., Jenkinson, S., et al. (1992) A controlled clinical trial of dichloroacetate for treatment of lactic acidosis in adults. The Dichloroacetate-Lactic Acidosis Study Group. N. Engl. J. Med., 327, 1564-1569. https://doi.org/10.1056/NEJM199211263272204
  103. Stacpoole, P.W., Kerr, D.S., Barnes, C., Bunch, S.T., Carney, P.R., Fennell, E.M., Felitsyn, N.M., Gilmore, R.L., Greer, M., Henderson, G.N., Hutson, A.D., Neiberger, R.E., O'Brien, R.G., Perkins, L.A., Quisling, R.G., Shroads, A.L., Shuster, J.J., Silverstein, J.H., Theriaque, D.W. and Valenstein, E. (2006) Controlled clinical trial of dichloroacetate for treatment of congenital lactic acidosis in children. Pediatrics, 117, 1519-1531. https://doi.org/10.1542/peds.2005-1226
  104. Stacpoole, P.W., Gilbert, L.R., Neiberger, R.E., Carney, P.R., Valenstein, E., Theriaque, D.W. and Shuster, J.J. (2008) Evaluation of long-term treatment of children with congenital lactic acidosis with dichloroacetate. Pediatrics, 121, e1223-e1228. https://doi.org/10.1542/peds.2007-2062
  105. Berendzen, K., Theriaque, D.W., Shuster, J. and Stacpoole, P.W. (2006) Therapeutic potential of dichloroacetate for pyruvate dehydrogenase complex deficiency. Mitochondrion, 6, 126-135. https://doi.org/10.1016/j.mito.2006.04.001
  106. Kaufmann, P., Engelstad, K., Wei, Y., Jhung, S., Sano, M.C., Shungu, D.C., Millar, W.S., Hong, X., Gooch, C.L., Mao, X., Pascual, J.M., Hirano, M., Stacpoole, P.W., DiMauro, S. and De Vivo, D.C. (2006) Dichloroacetate causes toxic neuropathy in MELAS: a randomized, controlled clinical trial. Neurology, 66, 324-330. https://doi.org/10.1212/01.wnl.0000196641.05913.27
  107. Zhou, Z.H., McCarthy, D.B., O'Connor, C.M., Reed, L.J. and Stoops, J.K. (2001) The remarkable structural and functional organization of the eukaryotic pyruvate dehydrogenase complexes. Proc. Natl. Acad. Sci. U.S.A., 98, 14802-14807. https://doi.org/10.1073/pnas.011597698
  108. Smolle, M., Prior, A.E., Brown, A.E., Cooper, A., Byron, O. and Lindsay, J.G. (2006) A new level of architectural complexity in the human pyruvate dehydrogenase complex. J. Biol. Chem., 281, 19772-19780. https://doi.org/10.1074/jbc.M601140200
  109. Brautigam, C.A., Wynn, R.M., Chuang, J.L., Machius, M., Tomchick, D.R. and Chuang, D.T. (2006) Structural insight into interactions between dihydrolipoamide dehydrogenase (E3) and E3 binding protein of human pyruvate dehydrogenase complex. Structure, 14, 611-621.1 https://doi.org/10.1016/j.str.2006.01.001
  110. Bowker-Kinley, M.M., Davis, W.I., Wu, P., Harris, R.A. and Popov, K.M. (1998) Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochem. J., 329, 191-196. https://doi.org/10.1042/bj3290191
  111. Huang, B., Wu, P., Popov, K.M. and Harris, R.A. (2003) Starvation and diabetes reduce the amount of pyruvate dehydrogenase phosphatase in rat heart and kidney. Diabetes, 52, 1371-1376. https://doi.org/10.2337/diabetes.52.6.1371
  112. Motojima, K. and Seto, K. (2003) Fibrates and statins rapidly and synergistically induce pyruvate dehydrogenase kinase 4 mRNA in the liver and muscles of mice. Biol. Pharm. Bull., 26, 954-958. https://doi.org/10.1248/bpb.26.954
  113. Hsieh, M.C., Das, D., Sambandam, N., Zhang, M.Q. and Nahle, Z. (2008) Regulation of the PDK4 isozyme by the Rb-E2F1 complex. J. Biol. Chem., 283, 27410-27417. https://doi.org/10.1074/jbc.M802418200
  114. Velpula, K.K., Bhasin, A., Asuthkar, S. and Tsung, A.J. (2013) Combined targeting of PDK1 and EGFR triggers regression of glioblastoma by reversing the Warburg effect. Cancer Res., 73, 7277-7289. https://doi.org/10.1158/0008-5472.CAN-13-1868
  115. Heshe, D., Hoogestraat, S., Brauckmann, C., Karst, U., Boos, J. and Lanvers-Kaminsky, C. (2011) Dichloroacetate metabolically targeted therapy defeats cytotoxicity of standard anticancer drugs. Cancer Chemother. Pharmacol., 67, 647-655. https://doi.org/10.1007/s00280-010-1361-6
  116. Roche, T.E., Baker, J.C., Yan, X., Hiromasa, Y., Gong, X., Peng, T., Dong, J., Turkan, A. and Kasten, S.A. (2001) Distinct regulatory properties of pyruvate dehydrogenase kinase and phosphatase isoforms. Prog. Nucleic Acid Res. Mol. Biol., 70, 33-75. https://doi.org/10.1016/S0079-6603(01)70013-X
  117. Bao, H., Kasten, S.A., Yan, X. and Roche, T.E. (2004) Pyruvate dehydrogenase kinase isoform 2 activity limited and further inhibited by slowing down the rate of dissociation of ADP. Biochemistry, 43, 13432-13441. https://doi.org/10.1021/bi049488x
  118. Kato, M., Li, J., Chuang, J.L. and Chuang, D.T. (2007) Distinct structural mechanisms for inhibition of pyruvate dehydrogenase kinase isoforms by AZD7545, dichloroacetate, and radicicol. Structure, 15, 992-1004. https://doi.org/10.1016/j.str.2007.07.001
  119. Klyuyeva, A., Tuganova, A. and Popov, K.M. (2007) Amino acid residues responsible for the recognition of dichloroacetate by pyruvate dehydrogenase kinase 2. FEBS Lett., 581, 2988-2992. https://doi.org/10.1016/j.febslet.2007.05.052
  120. Li, J., Kato, M. and Chuang, D.T. (2009) Pivotal role of the C-terminal DW-motif in mediating inhibition of pyruvate dehydrogenase kinase 2 by dichloroacetate. J. Biol. Chem., 284, 34458-34467. https://doi.org/10.1074/jbc.M109.065557
  121. Evans, O.B. and Stacpoole, P.W. (1982) Prolonged hypolactatemia and increased total pyruvate dehydrogenase activity by dichloroacetate. Biochem. Pharmacol., 31, 1295-1300. https://doi.org/10.1016/0006-2952(82)90019-3
  122. Curry, S.H., Chu, P.I., Baumgartner, T.G. and Stacpoole, P.W. (1985) Plasma concentrations and metabolic effects of intravenous sodium dichloroacetate. Clin. Pharmacol. Ther., 37, 89-93. https://doi.org/10.1038/clpt.1985.17
  123. Stacpoole, P.W., Nagaraja, N.V. and Hutson, A.D. (2003) Efficacy of dichloroacetate as a lactate-lowering drug. J. Clin. Pharmacol., 43, 683-691. https://doi.org/10.1177/0091270003254637
  124. Morten, K.J., Caky, M. and Matthews, P.M. (1998) Stabilization of the pyruvate dehydrogenase E1alpha subunit by dichloroacetate. Neurology, 51, 1331-1335. https://doi.org/10.1212/WNL.51.5.1331
  125. Han, Z., Berendzen, K., Zhong, L., Surolia, I., Chouthai, N., Zhao, W., Maina, N., Srivastava, A. and Stacpoole, P.W. (2008) A combined therapeutic approach for pyruvate dehydrogenase deficiency using self-complementary adeno-associated virus serotype-specific vectors and dichloroacetate. Mol. Genet. Metab., 93, 381-387. https://doi.org/10.1016/j.ymgme.2007.10.131
  126. Ishida, N., Kitagawa, M., Hatakeyama, S. and Nakayama, K. (2000) Phosphorylation at serine 10, a major phosphorylation site of p27(Kip1), increases its protein stability. J. Biol. Chem., 275, 25146-25154. https://doi.org/10.1074/jbc.M001144200
  127. Lu, K.P., Liou, Y.C. and Zhou, X.Z. (2002) Pinning down proline-directed phosphorylation signaling. Trends Cell Biol., 12, 164-172. https://doi.org/10.1016/S0962-8924(02)02253-5
  128. Virshup, D.M., Eide, E.J., Forger, D.B., Gallego, M. and Harnish, E.V. (2007) Reversible protein phosphorylation regulates circadian rhythms. Cold Spring Harb. Symp. Quant. Biol., 72, 413-420.
  129. Moretto-Zita, M., Jin, H., Shen, Z., Zhao, T., Briggs, S.P. and Xu, Y. (2010) Phosphorylation stabilizes Nanog by promoting its interaction with Pin1. Proc. Natl. Acad. Sci. U.S.A., 107, 13312-13317. https://doi.org/10.1073/pnas.1005847107
  130. Ozlu, N., Akten, B., Timm, W., Haseley, N., Steen, H. and Steen, J.A. (2010) Phosphoproteomics. Wiley Interdiscip. Rev. Syst. Biol. Med., 2, 255-276.
  131. Thomas, L.W., Lam, C. and Edwards, S.W. (2010) Mcl-1; the molecular regulation of protein function. FEBS Lett., 584, 2981-2989. https://doi.org/10.1016/j.febslet.2010.05.061
  132. Geschwind, J.F., Georgiades, C.S., Ko, Y.H. and Pedersen, P.L. (2004) Recently elucidated energy catabolism pathways provide opportunities for novel treatments in hepatocellular carcinoma. Expert Rev. Anticancer Ther., 4, 449-457. https://doi.org/10.1586/14737140.4.3.449
  133. Buijs, M., Vossen, J.A., Geschwind, J.F., Ishimori, T., Engles, J.M., Acha-Ngwodo, O., Wahl, R.L. and Vali, M. (2009) Specificity of the anti-glycolytic activity of 3-bromopyruvate confirmed by FDG uptake in a rat model of breast cancer. Invest. New Drugs, 27, 120-123. https://doi.org/10.1007/s10637-008-9145-0
  134. Ko, Y.H., Smith, B.L., Wang, Y., Pomper, M.G., Rini, D.A., Torbenson, M.S., Hullihen, J. and Pedersen, P.L. (2004) Advanced cancers: eradication in all cases using 3-bromopyruvate therapy to deplete ATP. Biochem. Biophys. Res. Commun., 324, 269-275. https://doi.org/10.1016/j.bbrc.2004.09.047
  135. Danial, N.N., Gramm, C.F., Scorrano, L., Zhang, C.Y., Krauss, S., Ranger, A.M., Datta, S.R., Greenberg, M.E., Licklider, L.J., Lowell, B.B., Gygi, S.P. and Korsmeyer, S.J. (2003) BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature, 424, 952-956. https://doi.org/10.1038/nature01825
  136. Ganapathy-Kanniappan, S., Geschwind, J.F., Kunjithapatham, R., Buijs, M., Vossen, J.A., Tchernyshyov, I., Cole, R.N., Syed, L.H., Rao, P.P., Ota, S. and Vali, M. (2009) Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is pyruvylated during 3-bromopyruvate mediated cancer cell death. Anticancer Res., 29, 4909-4918.
  137. Ihrlund, L.S., Hernlund, E., Khan, O. and Shoshan, M.C. (2008) 3-Bromopyruvate as inhibitor of tumour cell energy metabolism and chemopotentiator of platinum drugs. Mol. Oncol., 2, 94-101. https://doi.org/10.1016/j.molonc.2008.01.003
  138. Vali, M., Vossen, J.A., Buijs, M., Engles, J.M., Liapi, E., Ventura, V.P., Khwaja, A., Acha-Ngwodo, O., Ganapathy-Kanniappan, S., Syed, L., Wahl, R.L. and Geschwind, J.F. (2008) Targeting of VX2 rabbit liver tumor by selective delivery of 3-bromopyruvate: a biodistribution and survival study. J. Pharmacol. Exp. Ther., 327, 32-37. https://doi.org/10.1124/jpet.108.141093
  139. Xu, R.H., Pelicano, H., Zhou, Y., Carew, J.S., Feng, L., Bhalla, K.N., Keating, M.J. and Huang, P. (2005) Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res., 65, 613-621.
  140. Blagosklonny, M.V. (2010) Linking calorie restriction to longevity through sirtuins and autophagy: any role for TOR. Cell Death Dis., 1, e12. https://doi.org/10.1038/cddis.2009.17
  141. Morselli, E., Maiuri, M.C., Markaki, M., Megalou, E., Pasparaki, A., Palikaras, K., Criollo, A., Galluzzi, L., Malik, S.A., Vitale, I., Michaud, M., Madeo, F., Tavernarakis, N. and Kroemer, G. (2010) Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy. Cell Death Dis., 1, e10. https://doi.org/10.1038/cddis.2009.8
  142. Willcox, D.C., Willcox, B.J., Todoriki, H. and Suzuki, M. (2009) The Okinawan diet: health implications of a low-calorie, nutrient-dense, antioxidant-rich dietary pattern low in glycemic load. J. Am. Coll. Nutr., 28 Suppl, 500S-516S. https://doi.org/10.1080/07315724.2009.10718117
  143. Ho, V.W., Leung, K., Hsu, A., Luk, B., Lai, J., Shen, S.Y., Minchinton, A.I., Waterhouse, D., Bally, M.B., Lin, W., Nelson, B.H., Sly, L.M. and Krystal, G. (2011) A low carbohydrate, high protein diet slows tumor growth and prevents cancer initiation. Cancer Res., 71, 4484-4493. https://doi.org/10.1158/0008-5472.CAN-10-3973
  144. Bowker, S.L., Majumdar, S.R., Veugelers, P. and Johnson, J.A. (2006) Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin. Diabetes Care, 29, 254-258. https://doi.org/10.2337/diacare.29.02.06.dc05-1558
  145. Evans, J.M., Donnelly, L.A., Emslie-Smith, A.M., Alessi, D.R. and Morris, A.D. (2005) Metformin and reduced risk of cancer in diabetic patients. BMJ, 330, 1304-1305. https://doi.org/10.1136/bmj.38415.708634.F7
  146. Nicklin, P., Bergman, P., Zhang, B., Triantafellow, E., Wang, H., Nyfeler, B., Yang, H., Hild, M., Kung, C., Wilson, C., Myer, V.E., MacKeigan, J.P., Porter, J.A., Wang, Y.K., Cantley, L.C., Finan, P.M. and Murphy, L.O. (2009) Bidirectional transport of amino acids regulates mTOR and autophagy. Cell, 136, 521-534. https://doi.org/10.1016/j.cell.2008.11.044
  147. Venkateswaran, V. and Klotz, L.H. (2010) Diet and prostate cancer: mechanisms of action and implications for chemoprevention. Nat. Rev. Urol., 7, 442-453. https://doi.org/10.1038/nrurol.2010.102
  148. Nomura, D.K., Long, J.Z., Niessen, S., Hoover, H.S., Ng, S.W. and Cravatt, B.F. (2010) Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell, 140, 49-61. https://doi.org/10.1016/j.cell.2009.11.027
  149. Hursting, S.D., Lavigne, J.A., Berrigan, D., Perkins, S.N. and Barrett, J.C. (2003) Calorie restriction, aging, and cancer prevention: mechanisms of action and applicability to humans. Annu. Rev. Med., 54, 131-152. https://doi.org/10.1146/annurev.med.54.101601.152156
  150. El Mjiyad, N., Caro-Maldonado, A., Ramirez-Peinado, S. and Munoz-Pinedo, C. (2011) Sugar-free approaches to cancer cell killing. Oncogene, 30, 253-264. https://doi.org/10.1038/onc.2010.466
  151. Lee, C. and Longo, V.D. (2011) Fasting vs dietary restriction in cellular protection and cancer treatment: from model organisms to patients. Oncogene, 30, 3305-3316. https://doi.org/10.1038/onc.2011.91
  152. Wallace, D.C. (2012) Mitochondria and cancer. Nat. Rev. Cancer, 12, 685-698. https://doi.org/10.1038/nrc3365
  153. Galluzzi, L., Kepp, O. and Kroemer, G. (2012) Mitochondria: master regulators of danger signalling. Nat. Rev. Mol. Cell Biol., 13, 780-788. https://doi.org/10.1038/nrm3479
  154. Cheon, J.M., Kim, D.I. and Kim, K.S. (2015) Insulin sensitivity improvement of fermented Korean Red Ginseng (Panax ginseng) mediated by insulin resistance hallmarks in old-aged ob/ob mice. J. Ginseng Res., 39, 331-337. https://doi.org/10.1016/j.jgr.2015.03.005
  155. Kim, A.Y., Kwak, J.H., Je, N.K., Lee, Y.H. and Jung, Y.S. (2015) Epithelial-mesenchymal transition is associated with acquired resistance to 5-fluorocuracil in HT-29 colon cancer cells. Toxicol. Res., 31, 151-156. https://doi.org/10.5487/TR.2015.31.2.151
  156. Kim, I.S., Yang, S.Y., Han, J.H., Jung, S.H., Park, H.S. and Myung, C.S. (2015) Differential gene expression in GPR40-overexpressing pancreatic beta-cells treated with linoleic acid. Korean J. Physiol. Pharmacol., 19, 141-149. https://doi.org/10.4196/kjpp.2015.19.2.141
  157. Li, Y., Park, J., Piao, L., Kong, G., Kim, Y., Park, K.A., Zhang, T., Hong, J., Hur, G.M., Seok, J.H., Choi, S.W., Yoo, B.C., Hemmings, B.A., Brazil, D.P., Kim, S.H. and Park, J. (2013) PKB-mediated PHF20 phosphorylation on Ser291 is required for p53 function in DNA damage. Cell. Signal., 25, 74-84. https://doi.org/10.1016/j.cellsig.2012.09.009
  158. Na, C.H., Hong, J.H., Kim, W.S., Shanta, S.R., Bang, J.Y., Park, D., Kim, H.K. and Kim, K.P. (2015) Identification of protein markers specific for papillary renal cell carcinoma using imaging mass spectrometry. Mol. Cells, 38, 624-629. https://doi.org/10.14348/molcells.2015.0013
  159. Liu, Y., Cao, Y., Zhang, W., Bergmeier, S., Qian, Y., Akbar, H., Colvin, R., Ding, J., Tong, L., Wu, S., Hines, J. and Chen, X. (2012) A small-molecule inhibitor of glucose transporter 1 downregulates glycolysis, induces cell-cycle arrest, and inhibits cancer cell growth in vitro and in vivo. Mol. Cancer Ther., 11, 1672-1682. https://doi.org/10.1158/1535-7163.MCT-12-0131
  160. Chan, D.A., Sutphin, P.D., Nguyen, P., Turcotte, S., Lai, E.W., Banh, A., Reynolds, G.E., Chi, J.T., Wu, J., Solow-Cordero, D.E., Bonnet, M., Flanagan, J.U., Bouley, D.M., Graves, E.E., Denny, W.A., Hay, M.P. and Giaccia, A.J. (2011) Targeting GLUT1 and the Warburg effect in renal cell carcinoma by chemical synthetic lethality. Sci. Transl. Med., 3, 94ra70.
  161. Anastasiou, D., Yu, Y., Israelsen, W.J., Jiang, J.K., Boxer, M.B., Hong, B.S., Tempel, W., Dimov, S., Shen, M., Jha, A., Yang, H., Mattaini, K.R., Metallo, C.M., Fiske, B.P., Courtney, K.D., Malstrom, S., Khan, T.M., Kung, C., Skoumbourdis, A.P., Veith, H., Southall, N., Walsh, M.J., Brimacombe, K.R., Leister, W., Lunt, S.Y., Johnson, Z.R., Yen, K.E., Kunii, K., Davidson, S.M., Christofk, H.R., Austin, C.P., Inglese, J., Harris, M.H., Asara, J.M., Stephanopoulos, G., Salituro, F.G., Jin, S., Dang, L., Auld, D.S., Park, H.W., Cantley, L.C., Thomas, C.J. and Vander Heiden, M.G. (2012) Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis. Nat. Chem. Biol., 8, 839-847. https://doi.org/10.1038/nchembio.1060
  162. Kung, C., Hixon, J., Choe, S., Marks, K., Gross, S., Murphy, E., DeLaBarre, B., Cianchetta, G., Sethumadhavan, S., Wang, X., Yan, S., Gao, Y., Fang, C., Wei, W., Jiang, F., Wang, S., Qian, K., Saunders, J., Driggers, E., Woo, H.K., Kunii, K., Murray, S., Yang, H., Yen, K., Liu, W., Cantley, L.C., Vander Heiden, M.G., Su, S.M., Jin, S., Salituro, F.G. and Dang, L. (2012) Small molecule activation of PKM2 in cancer cells induces serine auxotrophy. Chem. Biol., 19, 1187-1198. https://doi.org/10.1016/j.chembiol.2012.07.021
  163. Le, A., Cooper, C.R., Gouw, A.M., Dinavahi, R., Maitra, A., Deck, L.M., Royer, R.E., Vander Jagt, D.L., Semenza, G.L. and Dang, C.V. (2010) Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc. Natl. Acad. Sci. U.S.A., 107, 2037-2042. https://doi.org/10.1073/pnas.0914433107
  164. Bhardwaj, R., Sharma, P.K., Jadon, S.P. and Varshney, R. (2012) A combination of 2-deoxy-D-glucose and 6-aminonicotinamide induces cell cycle arrest and apoptosis selectively in irradiated human malignant cells. Tumour Biol., 33, 1021-1030. https://doi.org/10.1007/s13277-012-0335-1
  165. Sonveaux, P., Vegran, F., Schroeder, T., Wergin, M.C., Verrax, J., Rabbani, Z.N., De Saedeleer, C.J., Kennedy, K.M., Diepart, C., Jordan, B.F., Kelley, M.J., Gallez, B., Wahl, M.L., Feron, O. and Dewhirst, M.W. (2008) Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J. Clin. Invest., 118, 3930-3942.
  166. Michelakis, E.D., Webster, L. and Mackey, J.R. (2008) Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer. Br. J. Cancer, 99, 989-994. https://doi.org/10.1038/sj.bjc.6604554
  167. Strum, S.B., Adalsteinsson, O., Black, R.R., Segal, D., Peress, N.L. and Waldenfels, J. (2013) Case report: Sodium dichloroacetate (DCA) inhibition of the "Warburg Effect" in a human cancer patient: complete response in non-Hodgkin's lymphoma after disease progression with rituximab-CHOP. J. Bioenerg. Biomembr., 45, 307-315. https://doi.org/10.1007/s10863-012-9496-2
  168. Addie, M., Ballard, P., Buttar, D., Crafter, C., Currie, G., Davies, B.R., Debreczeni, J., Dry, H., Dudley, P., Greenwood, R., Johnson, P.D., Kettle, J.G., Lane, C., Lamont, G., Leach, A., Luke, R.W., Morris, J., Ogilvie, D., Page, K., Pass, M., Pearson, S. and Ruston, L. (2013) Discovery of 4-amino-N-[(1S)-1-(4-chlorophenyl)-3-hydroxypropyl]-1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidine-4-carboxamide (AZD5363), an orally bioavailable, potent inhibitor of Akt kinases. J. Med. Chem., 56, 2059-2073. https://doi.org/10.1021/jm301762v
  169. Lin, J., Sampath, D., Nannini, M.A., Lee, B.B., Degtyarev, M., Oeh, J., Savage, H., Guan, Z., Hong, R., Kassees, R., Lee, L.B., Risom, T., Gross, S., Liederer, B.M., Koeppen, H., Skelton, N.J., Wallin, J.J., Belvin, M., Punnoose, E., Friedman, L.S. and Lin, K. (2013) Targeting activated Akt with GDC-0068, a novel selective Akt inhibitor that is efficacious in multiple tumor models. Clin. Cancer Res., 19, 1760-1772. https://doi.org/10.1158/1078-0432.CCR-12-3072
  170. Dumble, M., Crouthamel, M.C., Zhang, S.Y., Schaber, M., Levy, D., Robell, K., Liu, Q., Figueroa, D.J., Minthorn, E.A., Seefeld, M.A., Rouse, M.B., Rabindran, S.K., Heerding, D.A. and Kumar, R. (2014) Discovery of novel AKT inhibitors with enhanced anti-tumor effects in combination with the MEK inhibitor. PLoS ONE, 9, e100880. https://doi.org/10.1371/journal.pone.0100880
  171. Hirai, H., Sootome, H., Nakatsuru, Y., Miyama, K., Taguchi, S., Tsujioka, K., Ueno, Y., Hatch, H., Majumder, P.K., Pan, B.S. and Kotani, H. (2010) MK-2206, an allosteric Akt inhibitor, enhances antitumor efficacy by standard chemotherapeutic agents or molecular targeted drugs in vitro and in vivo. Mol. Cancer Ther., 9, 1956-1967. https://doi.org/10.1158/1535-7163.MCT-09-1012
  172. Chen, X., Qian, Y. and Wu, S. (2015) The Warburg effect: evolving interpretations of an established concept. Free Radic. Biol. Med., 79, 253-263. https://doi.org/10.1016/j.freeradbiomed.2014.08.027

피인용 문헌

  1. A Benzylideneacetophenone Derivative Induces Apoptosis of Radiation-Resistant Human Breast Cancer Cells via Oxidative Stress vol.25, pp.4, 2017, https://doi.org/10.4062/biomolther.2017.010
  2. The Enzymology of 2-Hydroxyglutarate, 2-Hydroxyglutaramate and 2-Hydroxysuccinamate and Their Relationship to Oncometabolites vol.6, pp.2, 2017, https://doi.org/10.3390/biology6020024
  3. Functional Mitochondria in Health and Disease vol.8, pp.1664-2392, 2017, https://doi.org/10.3389/fendo.2017.00296
  4. Manipulating carbohydrate metabolism to enhance regeneration (retrospective on DOI 10.1002/bies.201300110) vol.38, pp.12, 2016, https://doi.org/10.1002/bies.201600196
  5. Metabolic Pathways of the Warburg Effect in Health and Disease: Perspectives of Choice, Chain or Chance vol.18, pp.12, 2017, https://doi.org/10.3390/ijms18122755
  6. Cancer and Exercise: Warburg Hypothesis, Tumour Metabolism and High-Intensity Anaerobic Exercise vol.6, pp.1, 2018, https://doi.org/10.3390/sports6010010
  7. mTOR signalling and cellular metabolism are mutual determinants in cancer vol.18, pp.12, 2018, https://doi.org/10.1038/s41568-018-0074-8
  8. Metabolic reprogramming of mitochondrial respiration in metastatic cancer pp.1573-7233, 2018, https://doi.org/10.1007/s10555-018-9769-2
  9. Serial MRI Imaging Reveals Minimal Impact of Ketogenic Diet on Established Liver Tumor Growth vol.10, pp.9, 2018, https://doi.org/10.3390/cancers10090312
  10. Emerging roles of TRIO and F-actin-binding protein in human diseases vol.16, pp.1, 2018, https://doi.org/10.1186/s12964-018-0237-y