• 제목/요약/키워드: Oxidative damage

검색결과 1,489건 처리시간 0.032초

흰쥐 간발암화 과정에서의 산소유리기의 동태 (Oxyradical Formation during the Hepatocarcinogenesis in Rat)

  • 김형춘;전완주;이현우;권명상;송계용;주왕기
    • 약학회지
    • /
    • 제36권2호
    • /
    • pp.180-187
    • /
    • 1992
  • This study investigated the hypothesis that carcinogen-induced elevation of oxyradical during the hepatocarcinogenesis in rat. The hepatic preneoplastic lesions in the Spraque-Dawley rats were induced by the carcinogen treatment such as diethylnitrosamine(DEN) and acetylaminofluorene(AAF) in combination with partial hepatectomy(PH). The liver sample was taken at 2, 6, 10 and 16 months after carcinogen treatments followed by PH. Carcinogen treatments initially increased the indices of oxidative damage(activities of xanthine oxidase and production rates of superoxide anion, microsomal hydrogen peroxide, hydroxyl radical) in the liver compared to PH groups. However, cytosolic hydrogen peroxide did not change significantly throughout the full time period. Of hydrogen peroxide scavenger, the catalase was remained lower than PH groups, whereas the peroxidase was increased after carcinogen treatments. Morphologically, the immunohistochemical analysis with glutathione-S-transferase of a placenta form(GSTP) antibody was used to detect the induction of preneoplastic nodules. During the hepatocarcinogenesis, both production rate of hydroxyl radical and activity of glutathione-S-transferase(GST) markedly increased with the appearance of the preneoplastic nodule. These results indicated that the hydroxyl radical of reactive oxygen species seemed to have a major influence on the hepatocarcinogenesis and the effect of time after removal of the carcinogen also appeared to be highly critical in the hepatocarcinogenesis.

  • PDF

Effect of Ganoderma Lucidum Pharmacopuncture on Chronic Liver Injury in Rats

  • Jang, Sun Hee;Yoon, Hyun Min;Kim, Bum Hoi;Jang, Kyung Jeon;Kim, Cheol Hong
    • Journal of Acupuncture Research
    • /
    • 제32권1호
    • /
    • pp.13-22
    • /
    • 2015
  • Objectives : Alcohol-related liver disease is a major cause of morbidity and mortality worldwide. The present study was undertaken to determine whether Ganoderma lucidum pharmacopuncture(GLP) could protect against chronic liver injury induced by ethanol intoxication in rats. Methods : Sprague-Dawley rats were divided into 4 groups: normal, control, normal saline pharmacopuncture(NP), and GLP, with 8 animals in each. Each group, except normal, received ethanol orally. The NP and GLP groups were treated daily with NP and GLP respectively. The control group was not treated. All rats except the normal group were intoxicated for 4 weeks by oral administration of EtOH(6 g/kg BW). Two acupuncture points were used: Qimen($LR_{14}$) and Taechung($LR_3$). Body weight, histopathological analysis, liver function, activities of antioxidant enzymes, and immunohistochemistry were assessed. Results : GLP reduced the histological changes due to chronic liver injury induced by EtOH and significantly reduced the increase in the alanine aminotransferase(ALT) and aspartate aminotransferase(AST) enzymes. It significantly reversed the superoxide dismutase(SOD) and the catalase activities(CAT). It also significantly decreased BAX and increased Bcl-2 immunoreactivity expression. Conclusions : This study showed the protective efficacy of GLP against EtOH-induced chronic liver injury in SD rats by modulating ethanol metabolizing enzymes activity, attenuating oxidative stress, and inhibiting mitochondrial damage-mediated apoptosis.

사람 섬유아세포에서 세리신잠 실샘가수분해물(Sericinjam Gland Hydrolysate)의 항산화 및 항노화 효과 (Anti-oxidant and Anti-aging Activities of Sericinjam Gland Hydrolysate Extract in Human Dermal Fibroblasts)

  • 천유리;황정욱;이희삼;윤세영;최용수;강상진
    • 대한화장품학회지
    • /
    • 제39권1호
    • /
    • pp.9-17
    • /
    • 2013
  • 본 논문에서는 세리신잠 실샘 가수분해물(Sericinjam Gland Hydrolysate: SJGH)을 이용하여 진피 섬유아세포에서 항산화 및 항노화 연구를 진행하였다. SJGH는 사람 섬유아세포에서 고농도의 과산화수소에 의한 세포사멸과 세포 내 산화 증가를 효과적으로 방어하였다. 또한 SJGH는 저농도의 과산화수소에 의한 섬유아세포의 SA-${\beta}$-Gal 발현과 MMP-1의 발현 증가를 억제하였고, 반대로 프로콜라겐 I의 생합성은 증가시켰다. 이러한 결과를 통해 SJGH의 항산화 및 항노화 효과가 우수함을 확인하였으며, SJGH가 항노화 화장품의 우수한 소재가 될 수 있음을 보여준다.

Protective Effect of Korean Red Ginseng against Aflatoxin B1-Induced Hepatotoxicity in Rat

  • Kim, Yong-Seong;Kim, Yong-Hoon;Noh, Jung-Ran;Cho, Eun-Sang;Park, Jong-Ho;Son, Hwa-Young
    • Journal of Ginseng Research
    • /
    • 제35권2호
    • /
    • pp.243-249
    • /
    • 2011
  • Korean red ginseng (KRG), the steamed root of Panax ginseng Meyer, has a variety of biological properties, including anti-inflammatory, antioxidant and anticancer effects. Aflatoxin $B_1$ ($AFB_1$) produced by the Aspergillus spp. causes acute hepatotoxicity by lipid peroxidation and oxidative DNA damage, and induces liver carcinoma in humans and laboratory animals. This study was performed to examine the protective effects of KRG against hepatotoxicity induced by $AFB_1$ using liver-specific serum marker analysis, histopathology, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling. In addition, to elucidate the possible mechanism of hepatoprotective effects, superoxide dismutase, catalase, glutathione peroxidase, and malondialdehyde were analyzed. Rats were treated with 250 mg/kg of KRG (KRG group) or saline ($AFB_1$ group) for 4 weeks and then received 150 ${\mu}g/kg$ of $AFB_1$ intraperitoneally for 3 days. Rats were sacrificed at 12 h, 24 h, 48 h, 72 h, or 1 wk after $AFB_1$ treatment. In the KRG pre-treatment group, serum alanine aminotransferase, aspartate aminotransferase, and malondialdehyde levels were low, but superoxide dismutase, catalase, and glutathione peroxidase activities were high as compared to the $AFB_1$ alone group. Histopathologically, $AFB_1$ treatment induced necrosis and apoptosis in hepatocytes, and led to inflammatory cells infiltration in the liver. KRG pre-treatment ameliorated these changes. These results indicate that KRG may have protective effects against hepatotoxicity induced by $AFB_1$ that involve the antioxidant properties of KRG.

산화스트레스에 의해 유도된 근세포 손상에서 심비디움 뿌리추출물의 효과 (Effect of Cymbidium Root Extracts on Oxidative Stress-induced Myoblasts Damage)

  • 김완중;김한성;오피츠 요크;가바야마 카즈야;김택중
    • 생명과학회지
    • /
    • 제24권9호
    • /
    • pp.1019-1024
    • /
    • 2014
  • 근위축은 근육을 사용하지 않음으로써 발생하는 근육 조직의 손실 또는 근육을 지배하는 신경의 손상으로 정의할 수 있다. 이 상태는 다양한 근육질환에 관여하는 활성산소종이 관여 한다. 우리는 심비디움 뿌리 추출물이 과산화수소에 의해 유도된 C2C12 근육세포 생존율 손실과 세포사를 억제한다는 것을 찾았다. 또한 심비디움 뿌리 추출물이 HSP70 단백질 발현증가와 SOD1 단백질 발현감소를 확인하였다. 이들의 결과는 심비디움 뿌리 추출물이 근위축에서 활성산소종을 환원하는 치료약물로서 작용이 가능할 것으로 사료된다.

Mitochondrial Efficiency-Dependent Viability of Saccharomyces cerevisiae Mutants Carrying Individual Electron Transport Chain Component Deletions

  • Kwon, Young-Yon;Choi, Kyung-Mi;Cho, ChangYeon;Lee, Cheol-Koo
    • Molecules and Cells
    • /
    • 제38권12호
    • /
    • pp.1054-1063
    • /
    • 2015
  • Mitochondria play a crucial role in eukaryotic cells; the mitochondrial electron transport chain (ETC) generates adenosine triphosphate (ATP), which serves as an energy source for numerous critical cellular activities. However, the ETC also generates deleterious reactive oxygen species (ROS) as a natural byproduct of oxidative phosphorylation. ROS are considered the major cause of aging because they damage proteins, lipids, and DNA by oxidation. We analyzed the chronological life span, growth phenotype, mitochondrial membrane potential (MMP), and intracellular ATP and mitochondrial superoxide levels of 33 single ETC component-deleted strains during the chronological aging process. Among the ETC mutant strains, 14 ($sdh1{\Delta}$, $sdh2{\Delta}$, $sdh4{\Delta}$, $cor1{\Delta}$, $cyt1{\Delta}$, $qcr7{\Delta}$, $qcr8{\Delta}$, $rip1{\Delta}$, $cox6{\Delta}$, $cox7{\Delta}$, $cox9{\Delta}$, $atp4{\Delta}$, $atp7{\Delta}$, and $atp17{\Delta}$) showed a significantly shorter life span. The deleted genes encode important elements of the ETC components succinate dehydrogenase (complex II) and cytochrome c oxidase (complex IV), and some of the deletions lead to structural instability of the membrane-$F_1F_0$-ATP synthase due to mutations in the stator stalk (complex V). These short-lived strains generated higher superoxide levels and produced lower ATP levels without alteration of MMP. In summary, ETC mutations decreased the life span of yeast due to impaired mitochondrial efficiency.

Transcriptomic Analysis of Rat Brain Tissue Following Gamma Knife Surgery: Early and Distinct Bilateral Effects in the Un-Irradiated Striatum

  • Hirano, Misato;Shibato, Junko;Rakwal, Randeep;Kouyama, Nobuo;Katayama, Yoko;Hayashi, Motohiro;Masuo, Yoshinori
    • Molecules and Cells
    • /
    • 제27권2호
    • /
    • pp.263-268
    • /
    • 2009
  • Gamma knife surgery (GKS) is used for the treatment of various human brain disorders. However, the biological effects of gamma ray irradiation on both the target area, and the surrounding tissues are not well studied. The effects of gamma ray exposure to both targeted and untargeted regions were therefore evaluated by monitoring gene expression changes in the unilateral irradiated (60 Gy) and contralateral un-irradiated striata in the rat. Striata of irradiated and control brains were dissected 16 hours post-irradiation for analysis using a whole genome 44K DNA oligo microarray approach. The results revealed 230 induced and 144 repressed genes in the irradiated striatum and 432 induced and 239 repressed genes in the unirradiated striatum. Out of these altered genes 39 of the induced and 16 of the reduced genes were common to both irradiated and un-irradiated tissue. Results of semiquantitative, confirmatory RT-PCR and western blot analyses suggested that ${\gamma}$-irradiation caused cellular damage, including oxidative stress, in the striata of both hemispheres of the brains of treated animals.

Oxymatrine Causes Hepatotoxicity by Promoting the Phosphorylation of JNK and Induction of Endoplasmic Reticulum Stress Mediated by ROS in LO2 Cells

  • Gu, Li-li;Shen, Zhe-lun;Li, Yang-Lei;Bao, Yi-Qi;Lu, Hong
    • Molecules and Cells
    • /
    • 제41권5호
    • /
    • pp.401-412
    • /
    • 2018
  • Oxymatrine (OMT) often used in treatment for chronic hepatitis B virus infection in clinic. However, OMT-induced liver injury has been reported. In this study, we aim to investigate the possible mechanism of OMT-induced hepatotoxicity in human normal liver cells (L02). Exposed cells to OMT, the cell viability was decreased and apoptosis rate increased, the intracellular markers of oxidative stress were changed. Simultaneously, OMT altered apoptotic related proteins levels, including Bcl-2, Bax and pro-caspase-8/-9/-3. In addition, OMT enhanced the protein levels of endoplasmic reticulum (ER) stress makers (GRP78/Bip, CHOP, and cleaved-Caspase-4) and phosphorylation of c-Jun N-terminal kinase (p-JNK), as well as the mRNA levels of GRP78/Bip, CHOP, caspase-4, and ER stress sensors (IREI, ATF6, and PERK). Pre-treatment with Z-VAD-fmk, JNK inhibitor SP600125 and N-acetyl-l-cysteine (NAC), a ROS scavenger, partly improved the survival rates and restored OMT-induced cellular damage, and reduced caspase-3 cleavage. SP600125 or NAC reduced OMT-induced p-JNK and NAC significantly lowered caspase-4. Furthermore, 4-PBA, the ER stress inhibitor, weakened inhibitory effect of OMT on cells, on the contrary, TM worsen. 4-PBA also reduced the levels of p-JNK and cleaved-caspase-3 proteins. Therefore, OMT-induced injury in L02 cells was related to ROS mediated p-JNK and ER stress induction. Antioxidant, by inhibition of p-JNK or ER stress, may be a feasible method to alleviate OMT-induced liver injury.

식품류를 이용한 방사선 방호 효과 -버섯류의 당 생물학적인 특징중심으로- (A Study on the Radioprotective Effects of Foods -Focusing on the Glycobiological Properties of Mushrooms-)

  • 김종수;안병권;최현숙;최두복;염정민;김숭평;이인성;조미자;차월석
    • KSBB Journal
    • /
    • 제30권1호
    • /
    • pp.11-20
    • /
    • 2015
  • Radiation causes various pathophysiological alterations in living animals, and it causes death at high doses by multiple mechanisms, including direct DNA damage and indirect oxidative stress. The search for useful radioprotectors has been an important issue in the field of radiation biology. Ideal radioprotectors should have low toxicity and an extended window of protection. As many synthetic compounds have toxic side effects, the natural products have attracted scientific attention as radioprotectors. Natural products that have been recently shown to be effective with various biological activities were found to have radioprotective effect. The aim of this review is to summary the recent research of the radioprotective effects of natural foods, especially focused on the glycobiological properties of mushrooms.

CO/HO-1 Induces NQO-1 Expression via Nrf2 Activation

  • Kim, Hyo-Jeong;Zheng, Min;Kim, Seul-Ki;Cho, Jung-Jee;Shin, Chang-Ho;Joe, Yeon-Soo;Chung, Hun-Taeg
    • IMMUNE NETWORK
    • /
    • 제11권6호
    • /
    • pp.376-382
    • /
    • 2011
  • Background: Carbon monoxide (CO) is a cytoprotective and homeostatic molecule with important signaling capabilities in physiological and pathophysiological situations. CO protects cells/tissues from damage by free radicals or oxidative stress. NAD(P)H:quinone oxidoreductase (NQO1) is a highly inducible enzyme that is regulated by the Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway, which is central to efficient detoxification of reactive metabolites and reactive oxygen species (ROS). Methods: We generated NQO1 promoter construct. HepG2 cells were treated with CO Releasing Molecules-2 (CORM-2) or CO gas and the gene expressions were measured by RT-PCR, immunoblot, and luciferase assays. Results: CO induced expression of NQO1 in human hepatocarcinoma cell lines by activation of Nrf2. Exposure of HepG2 cells to CO resulted in significant induction of NQO1 in dose- and time-dependent manners. Analysis of the NQO1 promoter indicated that an antioxidant responsible element (ARE)-containing region was critical for the CO-induced Nrf2-dependent increase of NQO1 gene expression in HepG2 cells. Conclusion: Our results suggest that CO-induced Nrf2 increases the expression of NQO1 which is well known to detoxify reactive metabolites and ROS.