• Title/Summary/Keyword: Oxidative Transformation

Search Result 58, Processing Time 0.024 seconds

Subtilisin QK, a Fibrinolytic Enzyme, Inhibits the Exogenous Nitrite and Hydrogen Peroxide Induced Protein Nitration, inVitro and inVivo

  • Ko, Ju-Ho;Yan, Junpeng;Zhu, Lei;Qi, Yipeng
    • BMB Reports
    • /
    • v.38 no.5
    • /
    • pp.577-583
    • /
    • 2005
  • Subtilisin QK, which is newly identified as a fibrinolytic enzyme from Bacillus subtilis QK02, has the ability of preventing nitrotyrosine formation in bovine serum albumin induced by nitrite, hydrogen peroxide and hemoglobin in vitro verified by ELISA, Western-blot and spectrophotometer assay. Subtilisin QK also attenuates the fluorescence emission spectra of bovine serum albumin in the course of oxidation caused by nitrite, hydrogen peroxide and hemoglobin. Furthermore, subtilisin QK could suppress the transformation of oxy-hemoglobin to met-hemoglobin caused by sodium nitrite, but not the heat-treated subtilisn QK. Compared with some other fibrinolytic enzymes and inactivated subtilisin QK treated by phenylmethylsulfonylfluoride, the ability of inhibiting met-hemoglobin formation of subtilisin QK reveals that the anti-oxidative ability of subtilisin QK is not concerned with its fibrinolytic function. Additionally, nitrotyrosine formation in proteins from brain, heart, liver, kidney, and muscle of mice that is intramuscular injected the mixture of nitrite, hydrogen peroxide and hemoglobin is attenuated by subtilisin QK. Subtilisin QK can also protect Human umbilical vein endothelial cell (ECV-304) from the damage caused by nitrite and hydrogen peroxide.

The Multi-Faceted Consequences of NRF2 Activation throughout Carcinogenesis

  • Christopher J. Occhiuto;Jessica A. Moerland;Ana S. Leal;Kathleen A. Gallo;Karen T. Liby
    • Molecules and Cells
    • /
    • v.46 no.3
    • /
    • pp.176-186
    • /
    • 2023
  • The oxidative balance of a cell is maintained by the Kelch-like ECH-associated protein 1 (KEAP1)/nuclear factor erythroid 2-related factor 2 (NRF2) pathway. This cytoprotective pathway detoxifies reactive oxygen species and xenobiotics. The role of the KEAP1/NRF2 pathway as pro-tumorigenic or anti-tumorigenic throughout stages of carcinogenesis (including initiation, promotion, progression, and metastasis) is complex. This mini review focuses on key studies describing how the KEAP1/NRF2 pathway affects cancer at different phases. The data compiled suggest that the roles of KEAP1/NRF2 in cancer are highly dependent on context; specifically, the model used (carcinogen-induced vs genetic), the tumor type, and the stage of cancer. Moreover, emerging data suggests that KEAP1/NRF2 is also important for regulating the tumor microenvironment and how its effects are amplified either by epigenetics or in response to co-occurring mutations. Further elucidation of the complexity of this pathway is needed in order to develop novel pharmacological tools and drugs to improve patient outcomes.

Removals of 1-Naphthol in Aqueous Solution Using Alginate Gel Beads with Entrapped Birnessites (버네사이트를 고정화한 알긴산 비드(Bir-AB)를 이용한 수용액 중 1-Naphthol의 제거)

  • Eom, Won-Suk;Lee, Doo-Hee;Shin, Hyun-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.4
    • /
    • pp.247-256
    • /
    • 2013
  • In this study, alginate beads containing birnessite (Bir-AB), a highly reactive oxidative catalyst for the transformation of phenolic compounds, was prepared and its 1-naphthol (1-NP) removal efficiency was investigated in a batch test. Based on scanning electron microscopy image, it can be inferred that the alginate gel cluster acts as a bridge which bind the birnessite particles together. Kinetic experiment with Bir-AB of different mixing ratios of birnessite to alginate (Bir : AG=0.25 : 1~1 : 1 w/w) indicate that pseudo-first order kinetic constants, $k(hr^{-1})$ for the 1-NP removals increased about 1.5 times when the birnessite mixing ratio was doubled. The removals of 1-NP was found to be dependent on solution pH and the pesudo-first order rate constants were increased from 0.331 $hr^{-1}$ at pH 10 to 0.661 $hr^{-1}$ at pH 4. The analysis of total organic carbon for the reaction solutions showed that a higher removal of dissolved organic carbon was achieved with Bir-AB as compared to birnessite. HPLC chromatographic analysis of the methanol extract after reaction of 1-NP with Bir-AB suggest that the reaction products could be removed through incorporation into the aliginate beads as a bound residue. Mn ions produced from the oxidative transformation of 1-NP by birnessite were also removed by sorption to Bir-AB. The Bir-AB was recovered quantitatively by simple filtration and was reused twice without significant loss of the initial reactivity.

Effect of Phenolic Mediators and Humic Acid on the Removal of 1-Indanone Using Manganese Oxide (망간산화물(Birnessite)을 이용한 1- Indanone 제거 시 페놀계 반응매개체와 휴믹산(HA) 영향 평가)

  • Choi, Chan-Kyu;Eom, Won-Suk;Shin, Hyun-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.7
    • /
    • pp.445-453
    • /
    • 2012
  • An investigation for removal of 1-indanone (1-ID), which were commonly produced from the biological and/or chemical treatment and natural weathering of the PAHs-contaminated soils, via oxidative transformation mediated by birnessite in the presence of various phenolic mediators is described. This study also examines the potential effect of the natural occurring substance humic acid (HA) on the oxidative transformation. The experiment was carried out in aqueous phase as a batch test (10 mg/L 1-ID, 0.3 mM phenolic mediators, $1.0g/L\;{\delta}-MnO_2$, at pH 5). All of the 11 tested phenoilic mediators belong to the group of natural occurring phenols and are widely used as model constituents of humic substances. From the results of HPLC analysis, it is demonstrated that 1-ID was not reactive to birnessite itself, but it can be effectively removed in birnessite-mediated cross coupling reactions in the presence of the phenolic mediators. The percent removals of 1-ID after 2 day incubation were ranged from 9.2 to 71.2% depending on the phenolic mediators applied. The initial rate constant ($K_{int}$, $hr^{-1}$) values for the 1-ID removals obtained from the pseudo-first-order kinetic plots also widely ranged from 0.18 to 15.0. Results of the correlative analysis between the removal efficiencies and structural characteristics of phenolic mediators indicate that the transformation of the 1-ID was considerably enhanced by the addition of electron-donating substituents (e.g., -OH, $-OCH_3$) at the benzne ring, and much less enhanced by the addition of electron-withdrawing substituents (e.g., -COOH, -CHO). The presence of HA showed that removal efficiencies of 1-ID in the birnessite-phenolic mediator systems decreased with increasing HA concentrations. However at low concentration of HA (< 2 mg/L), it caused some enhancement in the removals of 1-ID as compared to the control.

Development of transgenic cassava plants expressing IbOr gene by somatic embryogenesis (체세포배발생에 의한 IbOr 유전자 형질전환 카사바 개발)

  • Kim, Sun Ha;Kim, Myoung Duck;Park, Sung-Chul;Jeong, Jae Cheol;Lee, Haeng-Soon;Kwak, Sang-Soo
    • Journal of Plant Biotechnology
    • /
    • v.42 no.2
    • /
    • pp.88-92
    • /
    • 2015
  • Cassava (Manihot esculenta Crantz) is a useful root crop for food, animal feed and various industrial materials including biofuel. Despite of its importance as an industrial crop, the genetic engineering approaches to manipulate transgenic plant development in cassava are limited. In this study, to develop new cultivar with high level of carotenoids and enhanced tolerance to environmental stresses, sweetpotato IbOr gene involved in accumulation of carotenoids was introduced into an Indonesian IDB high-yielding cassava cultivar under the control of oxidative stress-inducible SWPA2 promoter through Agrobacterium-mediated transformation of friable embryogenic calli. The 19 transgenic lines were successfully generated on the basis of gDNA-PCR and IbOr transcript levels for further characterization in terms of carotenoid contents and environmental stresses. Therefore, IbOr transgenic cassava plants may be developed for enhanced biomass production with high levels of carotenoids on marginal lands.

Aspirin-Triggered Resolvin D1 Inhibits TGF-β1-Induced EndMT through Increasing the Expression of Smad7 and Is Closely Related to Oxidative Stress

  • Shu, Yusheng;Liu, Yu;Li, Xinxin;Cao, Ling;Yuan, Xiaolong;Li, Wenhui;Cao, Qianqian
    • Biomolecules & Therapeutics
    • /
    • v.24 no.2
    • /
    • pp.132-139
    • /
    • 2016
  • The endothelial-mesenchymal transition (EndMT) is known to be involved in the transformation of vascular endothelial cells to mesenchymal cells. EndMT has been confirmed that occur in various pathologic conditions. Transforming growth factor ${\beta}1$ (TGF-${\beta}1$) is a potent stimulator of the vascular endothelial to mesenchymal transition (EMT). Aspirin-triggered resolvin D1 (AT-RvD1) has been known to be involved in the resolution of inflammation, but whether it has effects on TGF-${\beta}1$-induced EndMT is not yet clear. Therefore, we investigated the effects of AT-RvD1 on the EndMT of human umbilical vein vascular endothelial cells line (HUVECs). Treatment with TGF-${\beta}1$ reduced the expression of Nrf2 and enhanced the level of F-actin, which is associated with paracellular permeability. The expression of endothelial marker VE-cadherin in HUVEC cells was reduced, and the expression of mesenchymal marker vimentin was enhanced. AT-RvD1 restored the expression of Nrf2 and vimentin and enhanced the expression of VE-cadherin. AT-RvD1 did also affect the migration of HUVEC cells. Inhibitory ${\kappa}B$ kinase 16 (IKK 16), which is known to inhibit the NF-${\kappa}B$ pathway, had an ability to increase the expression of Nrf2 and was associated with the inhibition effect of AT-RvD1 on TGF-${\beta}1$-induced EndMT, but it had no effect on TGF-${\beta}1$-induced EndMT alone. Smad7, which is a key regulator of TGF-${\beta}$/Smads signaling by negative feedback loops, was significantly increased with the treatment of AT-RvD1. These results suggest the possibility that AT-RvD1 suppresses the TGF-${\beta}1$-induced EndMT through increasing the expression of Smad7 and is closely related to oxidative stress.

Effects of soil organic matter and oxidoreductase on adsorption and desorption of herbicide oxadiazon in soils (제초제 oxadiazon의 토양 흡탈착에 미치는 유기물의 함량과 산화환원효소의 영향)

  • Lee, Wan-Seok;Kim, Jang-Eok
    • The Korean Journal of Pesticide Science
    • /
    • v.2 no.3
    • /
    • pp.70-78
    • /
    • 1998
  • Dissipation, adsorption and desorption of oxadiazon were examined in two soils containing different amounts of soil organic matter. In addition, reactivity of oxadiazon with humic monomers was searched to clarify binding mechanism of oxadiazon to soil organic matter in the presence of a laccase of Myceliophthera thermophila. Half lives of oxadiazon were 38 days in Soil I and 45 days in Soil II. Freundlich constant, k values of fresh soils were higher than those of oxidized soils. Adsorption rates of oxadiazon were increased 17.1% in Soil I and 9.3% in Soil II in the presence of a laccase but no significant increase was observed in oxidized soils. Desorption rates of oxadiazon in fresh soils were lower than those in oxidized soils. Desorption rates of adsorbed oxadiazon in soils addes with the enzyme were not changed in oxidized soils but decreased in fresh soils. The herbicide oxadiazon alone underwent no transformation by a laccase but in the presence of catechol, guaiacol and gallic acid as humic monomer, transformation rates of it were from 20% to 24%.

  • PDF

Antimelanogenic Effect of Purpurogallin in Murine Melanoma Cells (마우스 흑색종세포에서 Purpurogallin의 멜라닌 생성 억제 효과)

  • Kim, Han-Hyuk;Kim, Tae Hoon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.12
    • /
    • pp.1905-1911
    • /
    • 2015
  • Melanin is one of the most important factors affecting skin color. Melanogenesis is the bioprocess of melanin production by melanocytes in the skin and hair follicles and is mediated by several enzymes, such as tyrosinase, tyrosinase related protein (TRP)-1, and TRP-2. Convenient enzymatic transformation of the simple phenol pyrogallol with polyphenol oxidase originating from pear to an oxidative product, purpurogallin, was efficient. The structure of the pyrogallol oxidation product was identified on the basis of spectroscopic methods. The biotransformation product purpurogallin showed significant inhibitory effects against both melanin synthesis and tyrosinase activity in a dose-dependent manner in B16 melanoma cells. In addition, purpurogallin significantly attenuated melanin production by inhibiting TRP-1, and TRP-2 expression through modulation of their corresponding transcription factors, and microphthalamia- associated transcription factor in B16 cells. Consequently, purpurogallin derived from convenient enzymatic transformation of pyrogallol might be a beneficial material for reducing skin hyperpigmentation.

Effect of Heat Processed Ginseng on Anti-Fatigue (가공 인상의 항피로효과)

  • Shin, Y.W.;Choi, H.J.;Kim, D.H.;Park, J.H.;Kim, N.J.
    • Korean Journal of Pharmacognosy
    • /
    • v.37 no.4 s.147
    • /
    • pp.246-252
    • /
    • 2006
  • Processing of traditional herbal medicine is one of the pharmaceutical technique in oriental medicine. Most frequently used processing method in oriental medicine are roasting and steaming. In this studies, to elucidate the pharmacological transformation of traditional herbal medicine by means of processing them, Ginseng Radix (root of Panax ginseng, Araliaceae) was used as a sample. Processed ginseng radix (SGR, Sun Ginseng) was prepared by steaming of roots of white ginseng (GR) for 3 hours at $120^{\circ}C$. The biological activities of methanol extract of GR and SGR were investigated. According to DPPH radical scavenging effects, and inhibitory effects of xanthine oxidase and AAPH induced hemolysis, PGR exhibited more effective than those of GR in vitro. And, the antifatigue effect of GR and SGR were investigated using a weight-loading forced swimming test by monitoring swimming times and prolonged intensity exercise model rats by measuring blood biochemical parameters. GR and SGR were significantly prolonged swimming times in 8% body weight ratio loaded mice. Also, they had the inhibitory effects on the decrease of blood glucose levels, the elevation of serum creatinine, lactic acid and free fatty acid, and lactic dehydrogenase activities in forces swimming rats with 1% of the body weight attached to the neck for 3 hours. SGR was more excellent than GR on these effect. Also, these effects were transformed to the n-butanol fraction of methanol extract of SGR. From these results, it can be considered that SGR has antifatigue effect.

Biochemical Characterization of Transgenic Tobacco Plants Expressing a Human Dehydroascorbate Reductase Gene

  • Kwon, Suk-Yoon;Ahn, Young-Ock;Lee, Haeng-Soon;Kwak, Sang-Soo
    • BMB Reports
    • /
    • v.34 no.4
    • /
    • pp.316-321
    • /
    • 2001
  • Dehydroascorbate (DHA) reductase (DHAR, EC 1.8.5.1) catalyzes the reduction of DHA to reduced ascorbate (AsA) using glutathione (GSH) as the electron donor in order to maintain an appropriate level of ascorbate in plant cells. To analyze the physiological role of DHAR in environmental stress adaptation, we developed transgenic tobacco (Nicotiana tabacum cv. Xanthi) plants that express a human DHAR gene isolated from the human fetal liver cDNA library in the chloroplasts. We also investigated the DHAR activity, levels of ascorbate, and GSH. Two transgenic plants were successfully developed by Agrobacterium-mediated transformation and were confirmed by PCR and Southern blot analysis. DHAR activity and AsA content in mature leaves of transgenic plants were approximately 1.41 and 1.95 times higher than in the non-transgenic (NT) plants, respectively In addition, the content of oxidized glutathione (GSSG) in transgenic plants was approximately 2.95 times higher than in the NT plants. The ratios of AsA to DHA and GSSG to GSH were changed by overexpression of DHAR, as expected, even though the total content of ascorbate and glutathione was not significantly changed. When tobacco leaf discs were subjected to methyl viologen at $5\;{\mu}M$, $T_0$ transgenic plants showed about a 50% reduction in membrane damage compared to the NT plants.

  • PDF