DOI QR코드

DOI QR Code

Effect of Phenolic Mediators and Humic Acid on the Removal of 1-Indanone Using Manganese Oxide

망간산화물(Birnessite)을 이용한 1- Indanone 제거 시 페놀계 반응매개체와 휴믹산(HA) 영향 평가

  • Choi, Chan-Kyu (Department of Energy and Environment, The Graduate School of Energy and Environment, Seoul National University of Science and Technology) ;
  • Eom, Won-Suk (Department of Environmental Engineering, Seoul National University of Science and Technology) ;
  • Shin, Hyun-Sang (Department of Environmental Engineering, Seoul National University of Science and Technology)
  • 최찬규 (서울과학기술대학교 에너지환경대학원 에너지환경공학과) ;
  • 엄원숙 (서울과학기술대학교 환경공학과) ;
  • 신현상 (서울과학기술대학교 환경공학과)
  • Received : 2012.07.05
  • Accepted : 2012.07.23
  • Published : 2012.07.30

Abstract

An investigation for removal of 1-indanone (1-ID), which were commonly produced from the biological and/or chemical treatment and natural weathering of the PAHs-contaminated soils, via oxidative transformation mediated by birnessite in the presence of various phenolic mediators is described. This study also examines the potential effect of the natural occurring substance humic acid (HA) on the oxidative transformation. The experiment was carried out in aqueous phase as a batch test (10 mg/L 1-ID, 0.3 mM phenolic mediators, $1.0g/L\;{\delta}-MnO_2$, at pH 5). All of the 11 tested phenoilic mediators belong to the group of natural occurring phenols and are widely used as model constituents of humic substances. From the results of HPLC analysis, it is demonstrated that 1-ID was not reactive to birnessite itself, but it can be effectively removed in birnessite-mediated cross coupling reactions in the presence of the phenolic mediators. The percent removals of 1-ID after 2 day incubation were ranged from 9.2 to 71.2% depending on the phenolic mediators applied. The initial rate constant ($K_{int}$, $hr^{-1}$) values for the 1-ID removals obtained from the pseudo-first-order kinetic plots also widely ranged from 0.18 to 15.0. Results of the correlative analysis between the removal efficiencies and structural characteristics of phenolic mediators indicate that the transformation of the 1-ID was considerably enhanced by the addition of electron-donating substituents (e.g., -OH, $-OCH_3$) at the benzne ring, and much less enhanced by the addition of electron-withdrawing substituents (e.g., -COOH, -CHO). The presence of HA showed that removal efficiencies of 1-ID in the birnessite-phenolic mediator systems decreased with increasing HA concentrations. However at low concentration of HA (< 2 mg/L), it caused some enhancement in the removals of 1-ID as compared to the control.

본 연구에서는 PAHs 오염토양의 자연 풍화 및 화학적 생물학적 처리과정에서 반응부산물로 흔히 발견되는 PAH-케톤화합물인 1-indanon (1-ID)을 대상으로 페놀계 반응매개체 존재 하에서의 망간산화물에 의한 산화 변환 제거특성 및 용존 자연유기물인 휴믹산(HA)의 존재에 따른 영향을 조사하였다. 반응성 평가 실험은 수용액 상에서 회분식(10 mg/L 1-ID, 0.3 mM phenolic mediators, $1.0g/L\;{\delta}-MnO_2$, at pH 5)으로 수행 하였으며, 페놀계의 반응매개체(phenolic mediator)는 자연산 페놀화합물로서 휴믹물질의 모델 화합물로서도 널리 사용되고 있는 11종을 사용하였다. 실험결과 1-ID은 망간산화물 자체에 대하여는 비반응성을 띠었으나 페놀계 반응매개체 존재 하에서 교차-결합(cross-coupling)반응을 통해 제거됨을 HPLC 분석을 통해 확인하였으며, 1-ID의 제거율은 반응 2일 경과 후 9.2~71.2%범위에서 페놀계 반응매개체의 구조적 특성에 따라 다르게 나타났다. 각 반응매개체 존재 하에서의 1-ID의 교차결합 반응은 유사1차 반응 속도식을 따랐으며, 초기 반응속도 상수 값($K_{int}$, $hr^{-1}$)은 0.48~15.0의 넓은 범위에서 나타났다. 1-ID의 제거효율(제거율, 속도상수)은 -OH, $-OCH_3$ 등 전자주게(electron donating) 작용기를 포함하는 반응매개체에서 높았으며, -COOH, -CHO 등 전자받게(electron withdrowing) 작용기를 포함하는 반응매개체일수록 낮았다. 또한 동일 반응 조건에서 HA 존재에 따른 영향을 검토한 결과 낮은 HA 농도(< 2 mg/L) 조건에서는 1-ID 제거효율의 상승효과를 보였으나 전체적으로는 HA 주입 농도가 증가할수록 교차 결합 반응효율이 저하됨을 확인하였다.

Keywords

Acknowledgement

Supported by : 서울과학기술대학교

References

  1. Edwards, N. T., "Polycyclic aromatic hydrocarbons (PAHs) in the terrestrial environment: a review," J. Environ. Qual., 12(4), 427-441(1983).
  2. Muligan, C. N., Young, R. N. and Gibbs, B. F., "Surfactantenhanced remediation of contaminated soil: a review," Eng. Geol., 60(1-4), 371-380(2001). https://doi.org/10.1016/S0013-7952(00)00117-4
  3. Freeman, H. M. and Harris, E. F., "Hazardous Waste Remediation. Innovative treatment technologies, Technomic Publishing Company, Lancaster, Pennsylvania, USA., (1995).
  4. Eriksson, M., Dalhammar, G. and Borg-Karlsson, A. K., "Biological degradation of selected hydrocarbons in an old PAH/creosote contaminated soil from a gasworks site," Appl. Microbiol. Biotechnol., 53, 619-626(2000). https://doi.org/10.1007/s002530051667
  5. Lundstedt. S., "Analysis of PAHs and their transformation products in contaminated soil and remedial processes," Ph. D. thesis, Umea Univ., Sewden, (2003).
  6. Ferrarese, E., Andreottola, G. and Oprea, I. A., "Remediation of PAH-contaminated sediments by chemical oxidation," J. Hazard. Mater., (2007).
  7. Sehlin, E., "A study of the availability of PAHs and oxygenated PAHs in a contaminated soil," Degree Project in Chem., Umea Univ., Sweden, (2004).
  8. Mallakin A., McConkey B. J, Miao G. B., McKibben B., Snieckus V., Dixon D. G. and Greenberg B. M., "Impacts of structural photomodification on the toxicity of environmental contaminants: Anthracene photooxidation products," Ecotoxicol. Environ. Saf., 43, 204-212(1999). https://doi.org/10.1006/eesa.1999.1764
  9. Benjamin A. Musa Bandowe, Jaroslava Sobocka, Wolfgang Wilcke, "Oxygen-containing polycyclic aromatic hydrocarbons (OPAHs) in urban soils of Bratislava, Slovakia: Patterns, relation to PAHs and vertical distribution," Environ. Pollut., 159, 539-549(2011). https://doi.org/10.1016/j.envpol.2010.10.011
  10. Schlanges, I., Meyer, D., Palm, W. U. and Ruck, W., "Identification, quantification and distribution of PAC-metabolites, heterocyclic PAC and substituted PAC in groundwater samples of tar-contaminated sites from Germany," Polycyclic Aromatic Compounds, 28, 320-328(2008). https://doi.org/10.1080/10406630802377807
  11. Shindo, H. and Huang, P. M., "Role of Mn(IV) oxide in abiotic formation of humic substances in the environment," Nature (London), 298, 363-365(1982). https://doi.org/10.1038/298363a0
  12. Bollag J. M., Myers C., Pal S. and Huang P. M., "The role of abiotic and biotic catalysts in the transformation of phenol compounds," In Envirnmental Impact of Soil Components Interactions: Natural and Anthropogenic Organics (P. M. Haung, J. Berthelin, J. M. Boallg, W. B. McGill, A. L. Pake eds.), CRC Press, Boca Raton, FL, pp. 299-310(1995).
  13. Sparks, D L., "Environmental Soil Chemistry," pp. 99-139, Academic Press Inc., Califonia, USA(1995).
  14. Klibanov, A. M., Tu, T. M. and Scott. K. P., "Peroxidase catalyzed removal of phenols from coal-conversion waste waters," Sci., 221, 259-26(1983).
  15. Blalk, H. M., Simpson, A. J. and Pedersen, J. A., "Crosscoupling of sulfamide antimicrobial agents with model humic constituents" Environ. Sci. Technol., 39, 4463-4473(2005). https://doi.org/10.1021/es0500916
  16. Kang, K. H., Dec, J., Park, H., and Bollag, J.-M., "Effect of phenolic mediators and humic acid on cyprodinil transformation in presence of birnessite," Water Res., 38(11), 2737- 2745(2004). https://doi.org/10.1016/j.watres.2004.03.018
  17. Leenheer, J. A.,. McKnight, D. M., Thurman, E. M. and MacCarthy, P., Humic Substances in the Suwannee River, Georgia: Interaction, Properties and Proposed Structure, US Geology Survey, Open-File Report 85-557, Denver, Colorado (1989).
  18. Majcher, E., Chorover, J., Bollag, J. M. and Huang, P. M., "Evolution of $CO_2$ during birnessite-induced oxidation of 14C-labled catechol," Soil Sci. Soc. Am. J., 64, 157-163(2000). https://doi.org/10.2136/sssaj2000.641157x
  19. McKenzie, R. M., "The synthesis of birnessite, cryptomelane, and some other oxides and hydroxides of manganese," Miner. Mag., 38, 493-502(1971). https://doi.org/10.1180/minmag.1971.038.296.12
  20. Chang Chein, S. W., Chen, H. L., Wang, M. C. and Seshaiah, K., "Oxidative degradation and associated mineralization of catechol, hydroquinone and resocinol catalyzed by birnessite," Chemosphere, 74, 1125-1133(2009). https://doi.org/10.1016/j.chemosphere.2008.10.007
  21. Kennedy, B., Glidle, A. and Cunnane, V. J., "A study of the oxidation and polymerization of meta substituted phenol and aniline derivatives," J. Electroanaly. Chem., 608, 22-30 (2007). https://doi.org/10.1016/j.jelechem.2007.05.006
  22. Canas, A. and Camarero, S., "Laccases and their natural mediators: Biotechnological toos for sustainable eco-friendly processes," Biotechnol. Advances, 28, 694-705(2010) https://doi.org/10.1016/j.biotechadv.2010.05.002
  23. Kang, K. H., Lee, D. H. and Shin, H. S., "Reaction kinetics and transformation products of 1-naphthol by manganese oxide-mediated oxidative-coupling reaction," J. Hazad. Mater., 165, 540-547(2009). https://doi.org/10.1016/j.jhazmat.2008.10.027
  24. Lu, J., Huang, Q. and Mao, L., "Removal of acetaminophene using enzyme-mediated oxidative coupling processes:1. Reaction rate and pathways," Environ. Sci. Technol., 43, 7062-7067(2009). https://doi.org/10.1021/es9002422
  25. Simmons, K. E., Minard, R. D., Bollag, J.-M., "Oxidative coupling and polymerization of guaiacol, a lignin derivative," Soil Sci. Soc. Am. J., 52, 1356-1360(1988). https://doi.org/10.2136/sssaj1988.03615995005200050028x
  26. Choi, C. K., Harn, Y., Kim, S. U. and Shin, H. S., "Removals of PAH-quinones using birnessite-mediated oxidativetransformation processes," J. KEEE, 33(6), 396-404(2011).
  27. Ulrich, H. J. and Stone, A. T., "The oxidation of chlorophenols adsorbed to manganese oxide surface," Environ. Sci. Technol., 23, 421-428(1989). https://doi.org/10.1021/es00181a006
  28. Camarero, S., Ibarra, D., Martinez, M. J. and Martinez, A. T., "Liginin-derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes," Appl. Environ. Microbiaol., 71, 1775-1784(2005). https://doi.org/10.1128/AEM.71.4.1775-1784.2005
  29. Chen, W., Ding, Y., Iohnston, C. T., Teppen, B. J., Body, S. A. and Li, H., "Reaction of Lincosamide antibiotics with manganese oxide in aqueous solution," Environ. Sci. Technol., 44, 4486-4492(2010). https://doi.org/10.1021/es1000598

Cited by

  1. Removals of 1-Naphthol in Aqueous Solution Using Alginate Gel Beads with Entrapped Birnessites vol.35, pp.4, 2013, https://doi.org/10.4491/KSEE.2013.35.4.247
  2. Oxidative Transformation of Tetracycline in Aqueous Solution by Birnessite vol.37, pp.2, 2015, https://doi.org/10.4491/KSEE.2015.37.2.73