• 제목/요약/키워드: Oxidation temperature

검색결과 2,414건 처리시간 0.027초

산화반응에 의한 이방성 메조페이스 탄소섬유의 구조 변화(II)-주사전자현미경을 이용한 표면구조 관찰 (Structural Changes during Oxidation Process of Anisotopic Mesophase Carbon Fibers(II)-Surface Texture Observation by Scanning Electron Microscopy)

  • 노재승
    • 한국재료학회지
    • /
    • 제13권12호
    • /
    • pp.831-838
    • /
    • 2003
  • Anisotropic mesophase carbon fiber(AMCFs) was exposed to isothermal oxidation in air and $CO_2$atmosphere, and burn-off rates have measured by TGA. The microstructure changes of oxidized carbon fibers, were observed by SEM. It was observed that oxidation rate in the air is over 100 times faster than that in $CO_2$atmosphere. The activation energy obtained in air was about 43.4 Kcal/mole in the temperature range of $600∼800^{\circ}C$, and in $CO_2$was about 55.2 Kcal/mole in the temperature range of $950∼1200^{\circ}C$. Therefore, the oxidation reaction in both atmospheres was under chemical reaction regime in the above temperature ranges. It was shown that the oxidation of the AMCFs is initiated at the end of fibers at high temperature($1100^{\circ}C$) with developing the large pores, and the small pores are developed on the fiber surface at low temperature($900^{\circ}C$). In conclusion, the oxidation of the AMCFs is progressed through the imperfection.

Control of size and physical properties of graphene oxide by changing the oxidation temperature

  • Kang, Dong-Woo;Shin, Hyeon-Suk
    • Carbon letters
    • /
    • 제13권1호
    • /
    • pp.39-43
    • /
    • 2012
  • The size and the physical properties of graphene oxide sheets were controlled by changing the oxidation temperature of graphite. Graphite oxide (GO) samples were prepared at different oxidation temperatures of $20^{\circ}C$, $27^{\circ}C$ and $35^{\circ}C$ using a modified Hummers' method. The carbon-to-oxygen (C/O) ratio and the average size of the GO sheets varied according to the oxidation temperature: 1.26 and 12.4 ${\mu}m$ at $20^{\circ}C$, 1.24 and 10.5 ${\mu}m$ at $27^{\circ}C$, and 1.18 and 8.5 ${\mu}m$ at $35^{\circ}C$. This indicates that the C/O ratio and the average size of the graphene oxide sheets respectively increase as the oxidation temperature decreases. Moreover, it was observed that the surface charge and optical properties of the graphene oxide sheets could be tuned by changing the temperature. This study demonstrates the tunability of the physical properties of graphene oxide sheets and shows that the properties depend on the functional groups generated during the oxidation process.

Ni 기지 초내열합금의 고온산화 저항성에 미치는 Ti의 영향 (Effects of Ti on High Temperature Oxidation of Ni-Based Superalloys)

  • 박시준;서성문;유영수;정희원;장희진
    • Corrosion Science and Technology
    • /
    • 제15권3호
    • /
    • pp.129-134
    • /
    • 2016
  • The effects of Ti on the high temperature oxidation of Ni-based superalloys were investigated by cyclic oxidation at $850^{\circ}C$ and $1000^{\circ}C$. The oxide scale formed at $850^{\circ}C$ consists of $Cr_2O_3$, $Al_2O_3$, and $NiCr_2O_4$ layers, while a continuous $Al_2O_3$ layer was formed at $1000^{\circ}C$. The oxidation rate of the alloy with higher Ti content was higher than the alloy with less Ti content at $850^{\circ}C$, possibly due to the increase in the metal vacancy concentration in the $Cr_2O_3$ layer involved by incorporation of $Ti^{4+}$. However, Ti improved the oxidation resistance of the superalloy at $1000^{\circ}C$ by reducing oxygen vacancy concentration in $Al_2O_3$ layer.

The High Temperature Oxidation Behavior of Diffusion Aluminized MarM247 Superalloy

  • Matsunaga, Yasuo;Matsuoka, Akira;Nakagawa, Kiyokazu
    • Corrosion Science and Technology
    • /
    • 제2권1호
    • /
    • pp.53-57
    • /
    • 2003
  • The MarM247 based superalloy (8wt.%Cr- 9wt.%Co- 3wt.%Ta- 1.5wt.%Hf- 5.6%wt.Al- 9.5wt.%W- Bal. Ni) specimens were diffusion aluminized by for types of pack cementation methods, and their coating structure and their high temperature oxidation resistance were investigated. The coated specimens treated at 973K in high aluminum concentration pack had a coating layer containing large hafunium rich precipitates, which were originally included in substrate alloy. After the high temperature oxidation test in air containing 30 vol.% $H_2O$ at 1273K ~ 323K, the deep localized corrosion which reached to the substrate were observed along with these hafnium rich precipitates. On the other hand, the coated specimens treated at 1323K using low aluminum concentration pack showed the coating layer without the large hafunium rich precipitates, and after the high temperature oxidation test at 1273K for 1800 ksec, it did not show the deep localized corrosion. The nickel electroplating before the aluminizing forms thick hafnium free area, and its high temperature oxidation resistance were comparable to platinum modified aluminizing coatings at 1273K.

방전플라즈마 소결법으로 제작한 β-FeSi2 소결체의 고온 내산화성 (Oxidation Resistance of SPS (Spark Plasma Sintering) Sintered β-FeSi2Bodies at High Temperature)

  • 장세훈;홍지민;오익현
    • 한국재료학회지
    • /
    • 제17권3호
    • /
    • pp.132-136
    • /
    • 2007
  • Oxidation resistance of sintered ${\beta}-FeSi_{2}$ was investigated at intermediate temperature range in air atmosphere. Fully dense and porous bodies of ${\beta}-FeSi_{2}$ samples were fabricated by using the Spark Plasma Sintering (SPS). They were annealed at $900^{\circ}C$ for 5days to obtain ${\beta}-FeSi_{2}$ phase. The bulk samples were oxidized at $800,\;900\;and\;950^{\circ}C$ in air atmosphere. The high temperature oxidation tests reveal that amorphous $SiO_{2}$ layer, similar to Si was formed and grew parabolically on ${\beta}-FeSi_{2}$. Accelerated oxidation is not observed as well as cracks and grain boundary oxidation. Granular ${\varepsilon}-FeSi$ was developed below the oxide layer as a result of oxidation of ${\beta}-FeSi_{2}$. Oxidation resistance of sintered ${\beta}-FeSi_{2}$ was excellent for high-temperature thermoelectric application.

머플러용 스테인리스강의 내식성에 미치는 열적 산화의 영향 (Effects of Thermal Oxidation on Corrosion Resistance of Stainless Steels for Muffler Materials)

  • 김동우;김희산
    • 대한금속재료학회지
    • /
    • 제46권10호
    • /
    • pp.652-661
    • /
    • 2008
  • Reduction of NOx in emission gas, improvement of engine efficiency, and extension of warranty period has made demands for developing materials more corrosively resistant to the inner-muffler environments or predicting the lifetime of materials used in muffler more precisely. The corrosion inside muffler has been explained with condensate corrosion mainly though thermal oxidation experiences prior to condensate corrosion. Hence, the aim of this study is to describe how the thermal oxidation affects the corrosion of stainless steel exposed to the inner-muffler environments. Auger electron spectroscopy and electrochemical tests were employed to analyze oxide scale and to evaluate corrosion resistance, respectively. Thermal oxidation has different role of condensate corrosion depending on the temperature: inhibiting condensate corrosion below $380^{\circ}C$ and enhancing condensate corrosion above $380^{\circ}C$. The low temperature oxidation causes to form compact oxide layer functioning a barrier for penetrating condensate into a matrix. Although though thermal oxidation caused chromium-depleted layer between oxide layer and matrix, the enhancement of the condensate corrosion in high temperature oxidation resulted from corrosion-induced crevice formed by oxide scale rather than corrosion in chromium-depleted layer. It was proved by aids of anodic polarization tests and measurements of pitting corrosion potentials. By the study, the role of high temperature oxidation layer affecting the condensate corrosion of stainless steels used as muffler materials was well understood.

다양한 환경요인과 난분해성 유기물에 따른 고온산화 및 UV산화방식 총 유기탄소 산화율 변화 (Influences of Environmental Conditions and Refractory Organic Matters on Organic Carbon Oxidation Rates Measured by a High Temperature Combustion and a UV-sulfate Methods)

  • 정헌재;이보미;이근헌;신현상;허진
    • 한국물환경학회지
    • /
    • 제32권1호
    • /
    • pp.98-107
    • /
    • 2016
  • This study examined the effects of environmental conditions and the presence of refractory organic matter on oxidation rates of total organic carbon (TOC) measurements based on high temperature combustion and ultraviolet-sulfate methods. Spectroscopic indices for prediction of oxidation rates were also explored using the UV spectra and fluorescence excitation-emission matrix (EEM) of humic acids. Furthermore, optimum TOC instrument conditions were suggested by comparing oxidation rates of a standard TOC material under various conditions. Environmental conditions included salts, reduced ions, and suspended solids. Salts had the greatest influence on oxidation rates in the UV-sulfate method. However, no effect was detected in the high temperature combustion method. The UV-sulfate method showed lower humic substance oxidation rates, refractory natural organic matter, compared to the other methods. TOC oxidation rates for the UV-sulfate method were negatively correlated with higher specific-UV absorbance, humification index, and humic-like EEM peak intensities, suggesting that these spectroscopic indices could be used to predict TOC oxidation rates. TOC signals from instruments using the UV-sulfate method increased with increasing chamber temperature and increasing UV exposure durations. Signals were more sensitive to the former condition, suggesting that chamber temperature is important for improving the TOC oxidation rates of refractory organic matter.

정전 분무법을 이용하여 제조된 Fe-Cr-Al 분말 다공체 금속의 고온 산화에 미치는 소결 온도의 영향 (Effect of Sintering Temperature on the High Temperature Oxidation of Fe-Cr-Al Powder Porous Metal Manufactured by Electrospray Process)

  • 오재성;공영민;김병기;이기안
    • 한국분말재료학회지
    • /
    • 제19권6호
    • /
    • pp.435-441
    • /
    • 2012
  • A new manufacturing process of Fe-Cr-Al powder porous metal was attempted. First, ultra-fine fecralloy powders were produced by using the submerged electric wire explosion process. Evenly distributed colloid (0.05~0.5% powders) was dispersed on PU (Polyurethane) foam through the electrospray process. And then degreasing and sintering processes were conduced. In order to examine the effect of sintering temperature in process, pre-samples were sintered for two hours at temperatures of $1350^{\circ}C$, $1400^{\circ}C$, $1450^{\circ}C$, and $1500^{\circ}C$, respectively, in $H_2$ atmospheres. A 24-hour TGA (thermo gravimetric analysis) test was conducted at $1000^{\circ}C$ in a 79% $N_2$+21% $O_2$ to investigate the high temperature oxidation behavior of powder porous metal. The results of the high temperature oxidation tests showed that oxidation resistance increased with increasing sintering temperature (2.57% oxidation weight gain at $1500^{\circ}C$ sintered specimen). The high temperature oxidation mechanism of newly manufactured Fe-Cr-Al powder porous metal was also discussed.

Hot-Tube Oxidation Test에 의한 디젤엔진오일의 산화안정성 평가 (Evaluation of Oxidation Stability for Diesel Engine Oil by Hot-Tube Oxidation Test)

  • 정근우;조원오;김영운;서인옥;임수진
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1998년도 제28회 추계학술대회
    • /
    • pp.175-180
    • /
    • 1998
  • This paper describes evaluation of oxidation stability for diesel engine oils by Hot-tube oxidation tester at high temperature. Evaluation was rated by visual inspection of lacquer in capillary glass tube and TAN determination of used oil. Air, NO$_2$-air and SO$_2$-air mixed gases were used as oxidizing gas. One oil which has low oxidation stability is selected and reformulated by addition of some additives such as antioxidant, detergent and disperant to improve oxidation stability. As a results of reformulation, antioxidant and detergent was effective for improvement of high temperture oxidation stability on diesel engine oil.

  • PDF

WC-Co 초경합금의 산화거동 (Oxidation Behavior of WC-Co Hardmetal)

  • 이길근;권한상;하국현
    • 한국분말재료학회지
    • /
    • 제11권2호
    • /
    • pp.111-117
    • /
    • 2004
  • The oxidation behavior of 91 WC-9Co hardmetal in weight percentage has been studied in the present work as a part of the development of recycling process. The morphological and compositional changes of the WC-Co hardmetal with oxidation time at 90$0^{\circ}C$ were analyzed by using surface observation and X-ray diffraction. respective]y. As the oxidation time increased, the WC-Co hardmetal was continuously expanded to form porous oxide mixtures of $CoWO_4$ and $WO_3$. The morphology of porous oxide mixture was basically dependent on initial shape of the WC-Co hardmetal. From thermo-gravimetric (TG) analysis, it was found that the oxidation rate was increased with increasing oxidation temperature and oxygen content in the flowing atmospheric gas. The fraction of oxidation versus time curves showed S-curve relationship at a given of oxidation temperature. These oxidation behaviors of the WC-Co hardmetal were discussed in terms of previously proposed kinetic models.