Browse > Article
http://dx.doi.org/10.5714/CL.2012.13.1.039

Control of size and physical properties of graphene oxide by changing the oxidation temperature  

Kang, Dong-Woo (Two Dimensional Carbon Materials Center and Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology)
Shin, Hyeon-Suk (Two Dimensional Carbon Materials Center and Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology)
Publication Information
Carbon letters / v.13, no.1, 2012 , pp. 39-43 More about this Journal
Abstract
The size and the physical properties of graphene oxide sheets were controlled by changing the oxidation temperature of graphite. Graphite oxide (GO) samples were prepared at different oxidation temperatures of $20^{\circ}C$, $27^{\circ}C$ and $35^{\circ}C$ using a modified Hummers' method. The carbon-to-oxygen (C/O) ratio and the average size of the GO sheets varied according to the oxidation temperature: 1.26 and 12.4 ${\mu}m$ at $20^{\circ}C$, 1.24 and 10.5 ${\mu}m$ at $27^{\circ}C$, and 1.18 and 8.5 ${\mu}m$ at $35^{\circ}C$. This indicates that the C/O ratio and the average size of the graphene oxide sheets respectively increase as the oxidation temperature decreases. Moreover, it was observed that the surface charge and optical properties of the graphene oxide sheets could be tuned by changing the temperature. This study demonstrates the tunability of the physical properties of graphene oxide sheets and shows that the properties depend on the functional groups generated during the oxidation process.
Keywords
graphene; graphene oxide; graphite oxide; degree of oxidation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wu ZS, Ren W, Gao L, Liu B, Jiang C, Cheng HM. Synthesis of high-quality graphene with a pre-determined number of layers. Carbon, 47, 493 (2009). http://dx.doi.org/10.1016/j.carbon.2008.10.031.   DOI   ScienceOn
2 Jin M, Jeong HK, Yu WJ, Bae DJ, Kang BR, Lee YH. Graphene oxide thin film field effect transistors without reduction. J Phys D: Appl Phys, 42, 135109 (2009). http://dx.doi.org/10.1088/0022-3727/42/13/135109.   DOI   ScienceOn
3 Luo J, Cote LJ, Tung VC, Tan ATL, Goins PE, Wu J, Huang J. Graphene oxide nanocolloids. J Am Chem Soc, 132, 17667 (2010). http://dx.doi.org/10.1021/ja1078943.   DOI   ScienceOn
4 Zhang L, Liang J, Huang Y, Ma Y, Wang Y, Chen Y. Size-controlled synthesis of graphene oxide sheets on a large scale using chemical exfoliation. Carbon, 47, 3365 (2009). http://dx.doi.org/10.1016/j.carbon.2009.07.045.   DOI   ScienceOn
5 Hummers WS Jr, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc, 80, 1339 (1958).   DOI
6 Wang H, Robinson JT, Diankov G, Dai H. Nanocrystal growth on graphene with various degrees of oxidation. J Am Chem Soc, 132, 3270 (2010). http://dx.doi.org/10.1021/ja100329d.   DOI   ScienceOn
7 Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Ahn JH, Kim P, Choi JY, Hong BH. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457, 706 (2009). http://dx.doi.org/10.1038/nature07719.   DOI   ScienceOn
8 Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, De Heer WA. Electronic confinement and coherence in patterned epitaxial graphene. Science, 312, 1191 (2006). http://dx.doi.org/10.1126/science.1125925.   DOI   ScienceOn
9 Williams G, Seger B, Kamt PV. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano, 2, 1487 (2008). http://dx.doi.org/10.1021/nn800251f.   DOI   ScienceOn
10 Emtsev KV, Bostwick A, Horn K, Jobst J, Kellogg GL, Ley L, McChesney JL, Ohta T, Reshanov SA, Rohrl J, Rotenberg E, Schmid AK, Waldmann D, Weber HB, Seyller T. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature Mater, 8, 203 (2009). http://dx.doi.org/10.1038/nmat2382.   DOI   ScienceOn
11 Bae S, Kim H, Lee Y, Xu X, Park JS, Zheng Y, Balakrishnan J, Lei T, Ri Kim H, Song YI, Kim YJ, Kim KS, Ozyilmaz B, Ahn JH, Hong BH, Iijima S. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnol, 5, 574 (2010). http://dx.doi.org/10.1038/nnano.2010.132.   DOI
12 Yamaguchi H, Eda G, Mattevi C, Kim H, Chhowalla M. Highly uniform 300 mm wafer-scale deposition of single and multilayered chemically derived graphene thin films. ACS Nano, 4, 524 (2010). http://dx.doi.org/10.1021/nn901496p.   DOI   ScienceOn
13 Yang S, Feng X, Wang L, Tang K, Maier J, Mullen K. Graphenebased nanosheets with a sandwich structure. Angew Chem Int Ed, 49, 4795 (2010). http://dx.doi.org/10.1002/anie.201001634.   DOI   ScienceOn
14 McAllister MJ, Li JL, Adamson DH, Schniepp HC, Abdala AA, Liu J, Herrera-Alonso M, Milius DL, Car R, Prud'homme RK, Aksay IA. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater, 19, 4396 (2007). http://dx.doi.org/10.1021/cm0630800.   DOI   ScienceOn
15 Blake P, Brimicombe PD, Nair RR, Booth TJ, Jiang D, Schedin F, Ponomarenko LA, Morozov SV, Gleeson HF, Hill EW, Geim AK, Novoselov KS. Graphene-based liquid crystal device. Nano Lett, 8, 1704 (2008). http://dx.doi.org/10.1021/nl080649i.   DOI   ScienceOn
16 Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, Mc- Govern IT, Holland B, Byrne M, Gun'ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnol, 3, 563 (2008). http://dx.doi.org/10.1038/nnano.2008.215.   DOI   ScienceOn
17 Chae SJ, Güneş F, Kim KK, Kim ES, Han GH, Kim SM, Shin H, Yoon SM, Choi JY, Park MH, Yang CW, Pribat D, Lee YH. Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: wrinkle formation. Adv Mater, 21, 2328 (2009). http://dx.doi.org/10.1002/adma.200803016.   DOI   ScienceOn
18 Hamilton CE, Lomeda JR, Sun Z, Tour JM, Barron AR. High-yield organic dispersions of unfunctionalized graphene. Nano Lett, 9, 3460 (2009). http://dx.doi.org/10.1021/nl9016623.   DOI   ScienceOn
19 Behabtu N, Lomeda JR, Green MJ, Higginbotham AL, Sinitskii A, Kosynkin DV, Tsentalovich D, Parra-Vasquez ANG, Schmidt J, Kesselman E, Cohen Y, Talmon Y, Tour JM, Pasquali M. Spontaneous high-concentration dispersions and liquid crystals of graphene. Nature Nanotechnol, 5, 406 (2010). http://dx.doi.org/10.1038/nnano.2010.86.   DOI   ScienceOn
20 Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Jing K. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett, 9, 30 (2009). http://dx.doi.org/10.1021/nl801827v.   DOI   ScienceOn
21 Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field in atomically thin carbon films. Science, 306, 666 (2004). http://dx.doi.org/10.1126/science.1102896.   DOI   ScienceOn
22 Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS. Graphenebased composite materials. Nature, 442, 282 (2006). http://dx.doi.org/10.1038/nature04969.   DOI   ScienceOn
23 Zhang Y, Tan YW, Stormer HL, Kim P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature, 438, 201 (2005). http://dx.doi.org/10.1038/nature04235.   DOI   ScienceOn
24 Son YW, Cohen ML, Louie SG. Half-metallic graphene nanoribbons. Nature, 444, 347 (2006). http://dx.doi.org/10.1038/nature05180.   DOI   ScienceOn
25 Wang HM, Wu YH, Ni ZH, Shen ZX. Electronic transport and layer engineering in multilayer graphene structures. Appl Phys Lett, 92, 053504 (2008). http://dx.doi.org/10.1063/1.2840713.   DOI   ScienceOn