DOI QR코드

DOI QR Code

Control of size and physical properties of graphene oxide by changing the oxidation temperature

  • Kang, Dong-Woo (Two Dimensional Carbon Materials Center and Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology) ;
  • Shin, Hyeon-Suk (Two Dimensional Carbon Materials Center and Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology)
  • Received : 2011.08.31
  • Accepted : 2011.12.10
  • Published : 2012.01.31

Abstract

The size and the physical properties of graphene oxide sheets were controlled by changing the oxidation temperature of graphite. Graphite oxide (GO) samples were prepared at different oxidation temperatures of $20^{\circ}C$, $27^{\circ}C$ and $35^{\circ}C$ using a modified Hummers' method. The carbon-to-oxygen (C/O) ratio and the average size of the GO sheets varied according to the oxidation temperature: 1.26 and 12.4 ${\mu}m$ at $20^{\circ}C$, 1.24 and 10.5 ${\mu}m$ at $27^{\circ}C$, and 1.18 and 8.5 ${\mu}m$ at $35^{\circ}C$. This indicates that the C/O ratio and the average size of the graphene oxide sheets respectively increase as the oxidation temperature decreases. Moreover, it was observed that the surface charge and optical properties of the graphene oxide sheets could be tuned by changing the temperature. This study demonstrates the tunability of the physical properties of graphene oxide sheets and shows that the properties depend on the functional groups generated during the oxidation process.

Keywords

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field in atomically thin carbon films. Science, 306, 666 (2004). http://dx.doi.org/10.1126/science.1102896.
  2. Zhang Y, Tan YW, Stormer HL, Kim P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature, 438, 201 (2005). http://dx.doi.org/10.1038/nature04235.
  3. Son YW, Cohen ML, Louie SG. Half-metallic graphene nanoribbons. Nature, 444, 347 (2006). http://dx.doi.org/10.1038/nature05180.
  4. Wang HM, Wu YH, Ni ZH, Shen ZX. Electronic transport and layer engineering in multilayer graphene structures. Appl Phys Lett, 92, 053504 (2008). http://dx.doi.org/10.1063/1.2840713.
  5. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS. Graphenebased composite materials. Nature, 442, 282 (2006). http://dx.doi.org/10.1038/nature04969.
  6. McAllister MJ, Li JL, Adamson DH, Schniepp HC, Abdala AA, Liu J, Herrera-Alonso M, Milius DL, Car R, Prud'homme RK, Aksay IA. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater, 19, 4396 (2007). http://dx.doi.org/10.1021/cm0630800.
  7. Blake P, Brimicombe PD, Nair RR, Booth TJ, Jiang D, Schedin F, Ponomarenko LA, Morozov SV, Gleeson HF, Hill EW, Geim AK, Novoselov KS. Graphene-based liquid crystal device. Nano Lett, 8, 1704 (2008). http://dx.doi.org/10.1021/nl080649i.
  8. Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, Mc- Govern IT, Holland B, Byrne M, Gun'ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnol, 3, 563 (2008). http://dx.doi.org/10.1038/nnano.2008.215.
  9. Hamilton CE, Lomeda JR, Sun Z, Tour JM, Barron AR. High-yield organic dispersions of unfunctionalized graphene. Nano Lett, 9, 3460 (2009). http://dx.doi.org/10.1021/nl9016623.
  10. Behabtu N, Lomeda JR, Green MJ, Higginbotham AL, Sinitskii A, Kosynkin DV, Tsentalovich D, Parra-Vasquez ANG, Schmidt J, Kesselman E, Cohen Y, Talmon Y, Tour JM, Pasquali M. Spontaneous high-concentration dispersions and liquid crystals of graphene. Nature Nanotechnol, 5, 406 (2010). http://dx.doi.org/10.1038/nnano.2010.86.
  11. Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Jing K. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett, 9, 30 (2009). http://dx.doi.org/10.1021/nl801827v.
  12. Chae SJ, Güneş F, Kim KK, Kim ES, Han GH, Kim SM, Shin H, Yoon SM, Choi JY, Park MH, Yang CW, Pribat D, Lee YH. Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: wrinkle formation. Adv Mater, 21, 2328 (2009). http://dx.doi.org/10.1002/adma.200803016.
  13. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Ahn JH, Kim P, Choi JY, Hong BH. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457, 706 (2009). http://dx.doi.org/10.1038/nature07719.
  14. Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, De Heer WA. Electronic confinement and coherence in patterned epitaxial graphene. Science, 312, 1191 (2006). http://dx.doi.org/10.1126/science.1125925.
  15. Emtsev KV, Bostwick A, Horn K, Jobst J, Kellogg GL, Ley L, McChesney JL, Ohta T, Reshanov SA, Rohrl J, Rotenberg E, Schmid AK, Waldmann D, Weber HB, Seyller T. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature Mater, 8, 203 (2009). http://dx.doi.org/10.1038/nmat2382.
  16. Bae S, Kim H, Lee Y, Xu X, Park JS, Zheng Y, Balakrishnan J, Lei T, Ri Kim H, Song YI, Kim YJ, Kim KS, Ozyilmaz B, Ahn JH, Hong BH, Iijima S. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnol, 5, 574 (2010). http://dx.doi.org/10.1038/nnano.2010.132.
  17. Yamaguchi H, Eda G, Mattevi C, Kim H, Chhowalla M. Highly uniform 300 mm wafer-scale deposition of single and multilayered chemically derived graphene thin films. ACS Nano, 4, 524 (2010). http://dx.doi.org/10.1021/nn901496p.
  18. Williams G, Seger B, Kamt PV. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano, 2, 1487 (2008). http://dx.doi.org/10.1021/nn800251f.
  19. Yang S, Feng X, Wang L, Tang K, Maier J, Mullen K. Graphenebased nanosheets with a sandwich structure. Angew Chem Int Ed, 49, 4795 (2010). http://dx.doi.org/10.1002/anie.201001634.
  20. Wang H, Robinson JT, Diankov G, Dai H. Nanocrystal growth on graphene with various degrees of oxidation. J Am Chem Soc, 132, 3270 (2010). http://dx.doi.org/10.1021/ja100329d.
  21. Wu ZS, Ren W, Gao L, Liu B, Jiang C, Cheng HM. Synthesis of high-quality graphene with a pre-determined number of layers. Carbon, 47, 493 (2009). http://dx.doi.org/10.1016/j.carbon.2008.10.031.
  22. Jin M, Jeong HK, Yu WJ, Bae DJ, Kang BR, Lee YH. Graphene oxide thin film field effect transistors without reduction. J Phys D: Appl Phys, 42, 135109 (2009). http://dx.doi.org/10.1088/0022-3727/42/13/135109.
  23. Luo J, Cote LJ, Tung VC, Tan ATL, Goins PE, Wu J, Huang J. Graphene oxide nanocolloids. J Am Chem Soc, 132, 17667 (2010). http://dx.doi.org/10.1021/ja1078943.
  24. Zhang L, Liang J, Huang Y, Ma Y, Wang Y, Chen Y. Size-controlled synthesis of graphene oxide sheets on a large scale using chemical exfoliation. Carbon, 47, 3365 (2009). http://dx.doi.org/10.1016/j.carbon.2009.07.045.
  25. Hummers WS Jr, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc, 80, 1339 (1958). https://doi.org/10.1021/ja01539a017

Cited by

  1. Electrical conductivity, thermal conductivity, and rheological properties of graphene oxide-based nanofluids vol.16, pp.12, 2014, https://doi.org/10.1007/s11051-014-2788-1
  2. Preparation of polymeric modifier-attached graphene-supported bimetallic Pt–Pd nanocomposites, and their electrochemical properties as electro-catalysts vol.40, pp.8, 2014, https://doi.org/10.1007/s11164-013-1127-y
  3. Bulk synthesis of highly conducting graphene oxide with long range ordering vol.5, pp.45, 2015, https://doi.org/10.1039/C5RA01943E
  4. Layered double hydroxide- and graphene-based hierarchical nanocomposites: Synthetic strategies and promising applications in energy conversion and conservation vol.9, pp.12, 2016, https://doi.org/10.1007/s12274-016-1250-3
  5. Effects of Changing the Amount of Oxidizing Agents on the Structural Properties of Graphene Oxide and its Dispersion Stability in an Aqueous Medium vol.204, pp.2, 2017, https://doi.org/10.1080/00986445.2016.1260009
  6. Emerging Approaches for Graphene Oxide Biosensor vol.89, pp.1, 2017, https://doi.org/10.1021/acs.analchem.6b04248
  7. Polymer/graphene oxide (GO) thermoset composites with GO as a crosslinker pp.1975-7220, 2018, https://doi.org/10.1007/s11814-017-0250-7
  8. A versatile platform for the highly efficient preparation of graphene quantum dots: photoluminescence emission and hydrophilicity–hydrophobicity regulation and organelle imaging vol.10, pp.3, 2018, https://doi.org/10.1039/C7NR08093J
  9. PEGylated nanographene-mediated metallic nanoparticle clusters for surface enhanced Raman scattering-based biosensing vol.143, pp.11, 2018, https://doi.org/10.1039/C8AN00329G