• Title/Summary/Keyword: Oxidation of carbon

Search Result 1,100, Processing Time 0.032 seconds

Study of Manufacturing Process and Properties of C/C Composites with Recycled Carbon Fiber Reinforced Plastics (리싸이클 CFRP 적용 C/C 복합재료 제조 및 특성 연구)

  • Kim, Seyoung;Han, In Sub;Bang, Hyung Joon;Kim, Soo-hyun;Seong, Young-Hoon;Lee, Seul Hee
    • Composites Research
    • /
    • v.35 no.4
    • /
    • pp.242-247
    • /
    • 2022
  • This study has a different direction from the existing technology of applying recycled carbon fiber obtained by recycling waste CFRP to CFRP again. A study was conducted to utilize recycled carbon fiber as a raw material for manufacturing a carbon/carbon (C/C) composite material comprising carbon as a matrix. First, it was attempted to recycle a commonly used epoxy resin composite material through a thermal decomposition process. By applying the newly proposed oxidation-inert atmosphere conversion technology to the pyrolysis process, the residual carbon rate of 1~2% was improved to 19%. Through this, the possibility of manufacturing C/C composite materials utilizing epoxy resin was confirmed. However, in the case of carbon obtained by the oxidation-inert atmosphere controlled pyrolysis process, the degree of oxygen bonding is high, so further improvement studies are needed. In addition, short-fiber C/C composite material specimens were prepared through the crushing and disintegrating processes after thermal decomposition of waste CFRP, and the optimum process conditions were derived through the evaluation of mechanical properties.

Effect of H2O2 modification of H3PW12O40@carbon for m-xylene oxidation to isophthalic acid

  • Fang, Zhou-wen;Wen, Di;Wang, Zhi-hao;Long, Xiang-li
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.11
    • /
    • pp.2172-2184
    • /
    • 2018
  • The production of isophthalic acid (IPA) from the oxidation of m-xylene (MX) by air is catalyzed by $H_3PW_{12}O_{40}$ (HPW) loaded on carbon and cobalt. We used $H_2O_2$ solution to oxidize the carbon to improve the catalytic activity of HPW@C catalyst. Experiments reveal that the best carbon sample is obtained by calcining the carbon at $700^{\circ}C$ for 4 h after being impregnated in the 3.75% $H_2O_2$ solution at $40^{\circ}C$ for 7 h. The surface characterization displays that the $H_2O_2$ modification leads to an increase in the acidic groups and a reduction in the basic groups on the carbon surface. The catalytic capability of the HPW@C catalyst depends on its surface chemical characteristics and physical property. The acidic groups play a more important part than the physical property. The MX conversion after 180 min reaction acquired by the HPW@C catalysts prepared from the activated carbon modified in the best condition is 3.81% over that obtained by the HPW@C catalysts prepared from the original carbon. The IPA produced by the former is 46.2% over that produced by the latter.

Oxidation of Fe-(5.3-29.8)%Mn-(1.1-1.9)%Al-0.45%C Alloys at 550-650 ℃

  • Park, Soon Yong;Xiao, Xiao;Kim, Min Ji;Lee, Geun Taek;Hwang, Dae Ho;Woo, Young Ho;Lee, Dong Bok
    • Corrosion Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.53-61
    • /
    • 2022
  • Alloys of Fe-(5.3-29.8)%Mn-(1.1-1.9)%Al-(0.4-0.5)%C were oxidized at 550 ℃ to 650 ℃ for 20 h to understand effects of alloying elements on oxidation. Their oxidation resistance increased with increasing Mn level to a small extent. Their oxidation kinetics changed from parabolic to linear when Mn content was decreased and temperature was increasing. Oxide scales primarily consisted of Fe2O3, Mn2O3, and MnFe2O4 without any protective Al-bearing oxides. During oxidation, Fe, Mn, and a lesser amount of Al diffused outward, while oxygen diffused inward to form internal oxides. Both oxide scales and internal oxides consisted of Fe, Mn, and a small amount of Al. The oxidation of Mn and carbon transformed γ-matrix to α-matrix in the subscale. The oxidation led to the formation of relatively thick oxide scales due to inherently inferior oxidation resistance of alloys and the formation of voids and cracks due to evaporation of manganese, decarburization, and outward diffusion of cations across oxides.

Properties of Iron Powder and Activated Carbon mixed Matrix for the Improvement of Cold Weather Concrete (한중콘크리트 개선을 위한 철가루와 활성탄 혼입 경화체 기초연구)

  • Kim, Won-Jong;Kim, Won-Sik;Kim, Gyu-Yong;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.175-176
    • /
    • 2022
  • By studying the characteristics of matrix insulated through heat generated through oxidation of iron powder, the basic research results on the possibility of buffering and applicability of Cold weather concrete as a curing method are presented. In order to prevent freezing due to a sharp decrease in temperature in the initial stage of curing, iron powder (Fe), powder activated carbon, which is a small amount of porous carbonaceous adsorbent, and salt (NaCl) as an oxidizing agent are replaced with iron powder admixture. As the curing temperature increases, the strength tends to increase, and when replacing the admixture at the same curing temperature, the strength slightly decreases. This is determined as a result of generating iron oxide through an oxidation reaction of iron powder, activated carbon, and NaCl generating a large amount of pores in the matrix. In addition, the internal temperature tends to increase as the mixing substitution rate increases, and it is judged that the oxidation heat of the iron powder mixture affects the increase of the internal temperature during curing. The higher the replacement rate of the iron powder mixture, the slightly lower the strength, but it is determined that freezing and melting that may occur in the early stage of curing can be prevented due to an increase in the initial internal temperature.

  • PDF

Removal of toxic hydroquinone: Comparative studies on use of iron impregnated granular activated carbon as an adsorbent and catalyst

  • Tyagi, Ankit;Das, Susmita;Srivastava, Vimal Chandra
    • Environmental Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.474-483
    • /
    • 2019
  • In this study, iron (Fe) impregnated granular activated carbon (Fe-GAC) has been synthesized and characterized for various properties. Comparative studies have been performed for use of Fe-GAC as an adsorbent as well as a catalyst during catalytic oxidation of hydroquinone (HQ). In the batch adsorption study, effect of process parameter like initial HQ concentration ($C_o=25-1,000mg/L$), pH (2-10), contact time (t: 0-24 h), temperature (T: $15-45^{\circ}C$) and adsorbent dose (w: 5-50 g/L) have been studied. Maximum HQ adsorption efficiency of 75% was obtained at optimum parametric condition of: pH = 4, w = 40 g/L and t = 14 h. Pseudo-second order model best-fitted the HQ adsorption kinetics whereas Langmuir model best-represented the isothermal equilibrium behavior. During oxidation studies, effect of various process parameters like initial HQ concentration ($C_o:20-100mg/L$), pH (4-8), oxidant dose ($C_{H2O2}:0.4-1.6mL/L$) and catalyst dose (m: 0.5-1.5 g/L) have been optimized using Taguchi experimental design matrix. Maximum HQ removal efficiency of 83.56% was obtained at optimum condition of $C_o=100mg/L$, pH = 6, $C_{H2O2}=0.4mL/L,$ and m = 1 g/L. Overall use of Fe-GAC during catalytic oxidation seems to be a better as compared to its use an adsorbent for treatment of HQ bearing wastewater.

Improvement of Organic Substances Indicators by Linked Ultra Violet-Advanced Oxidation Process After Ozonation for Anaerobic Digested Wastewater (소화탈리액 대상 오존 전처리와 Ultra Violet-Advanced Oxidation Process 연계 처리를 통한 유기물질 지표 개선)

  • Jaiyeop Lee;Jesmin Akter;Ilho Kim
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.37 no.5
    • /
    • pp.253-259
    • /
    • 2023
  • Bioreactors are devices used by sewage treatment plants to process sewage and which produce active sludge, and sediments separated by solid-liquid are treated in anaerobic digestion tanks. In anaerobic digestion tanks, the volume of active sludge deposits is reduced and biogas is produced. After dehydrating the digestive sludge generated after anaerobic digestion, anaerobic digested wastewater, which features a high concentration of organic matters, is generated. In this study, the decomposition of organic carbon and nitrogen was studied by advanced oxidation process. Ozone-microbubble flotation process was used for oxidation pretreatment. During ozonation, the TOC decreased by 11.6%. After ozone treatment, the TOC decreased and the removal rate reached 80.4% as a result of the Ultra Violet-Advanced Oxidation Process (UV-AOP). The results with regard to organic substances before and after treatment differed depending on the organic carbon index, such as CODMn, CODCr, and TOC. Those indexes did not change significantly in ozone treatment, but decreased significantly after the UV-AOP process as the linkage treatment, and were removed by up to 39.1%, 15.2%, and 80.4%, respectively. It was confirmed that biodegradability was improved according to the ratio of CODMn to TOC. As for the nitrogen component, the ammonia nitrogen component showed a level of 3.2×102 mg/L or more, and the content was maintained at 80% even after treatment. Since most of the contaminants are removed from the treated water and its transparency is high, this water can be utilized as a resource that contains high concentrations of nitrogen.

Application and evaluation of boron nitride-assisted liquid silicon infiltration for preparing Cf/SiC composites

  • Kim, Jin-Hoon;Jeong, Eui-Gyung;Kim, Se-Young;Lee, Young-Seak
    • Carbon letters
    • /
    • v.12 no.2
    • /
    • pp.116-119
    • /
    • 2011
  • C/SiC composites were prepared by boron nitride (BN)-assisted liquid silicon infiltration (LSI), and their anti-oxidation and mechanical properties were investigated. The microstructures, bulk densities, and porosities of the C/SiC composites demonstrated that the infiltration of liquid silicon into the composites improved them, because the layered-structure BN worked as a lubricant. Increasing the amount of BN improved the anti-oxidation of the prepared C/SiC composites. This synergistic effect was induced by the assistance of BN in the LSI. More thermally stable SiC was formed in the composite, and fewer pores were formed in the composite, which reduced inward oxygen diffusion. The mechanical strength of the composite increased up to the addition of 3% BN and decreased thereafter due to increased brittleness from the presence of more SiC in the composite. Based on the anti-oxidation and mechanical properties of the prepared composites, we concluded that improved anti-oxidation of C/SiC composites can be achieved through BN-assisted LSI, although there may be some degradation of the mechanical properties. The desired anti-oxidation and mechanical properties of the composite can be achieved by optimizing the BN-assisted LSI conditions.

Application of ultra-high-temperature ceramics to oxidation-resistant and anti-ablation coatings for carbon-carbon composite (탄소-탄소 복합재의 내삭마 내산화 코팅을 위한 초고온 세라믹스의 적용)

  • Kim, Hyun-Mi;Choi, Sung-Churl;Cho, Nam Choon;Lee, Hyung Ik;Choi, Kyoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.6
    • /
    • pp.283-293
    • /
    • 2019
  • As applications in extreme environments such as aerospace, high-energy plasma and radio-active circumstances increases, the demand for materials that require higher melting points, higher mechanical strength and improved thermal conductivity continues to increase. Accordingly, in order to improve the oxidation/abrasion resistance of the carbon-carbon composite, which is a typical heat-resistant material, a method of using ultra high temperature ceramics was reviewed. The advantages and disadvantages of CVD coating, pack cementation and thermal plasma spraying, the simplest methods for synthesizing ultra-high temperature ceramics, were compared. As a method for applying the CVD coating method to C/C composites with complex shapes, the possibility of using thermodynamic calculation and CFD simulation was proposed. In addition, as a result of comparing the oxidation resistance of the TaC/SiC bi-layer coating and TaC/SiC multilayer coating produced by this method, the more excellent oxidation resistance of the multilayer coating on C/C was confirmed.