• Title/Summary/Keyword: Oxidation of air pollutants

Search Result 48, Processing Time 0.023 seconds

Recent Advances in Titania-based Composites for Photocatalytic Degradation of Indoor Volatile Organic Compounds

  • Raza, Nadeem;Kim, Ki-Hyun;Agbe, Henry;Kailasa, Suresh Kumar;Szulejko, Jan E.;Brown, Richard J.C.
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.4
    • /
    • pp.217-234
    • /
    • 2017
  • Indoor air pollutants can cause severe health problems, specifically in terms of toxicological impacts on human. Every day, a complex mixture of many air pollutants is emitted from various sources and subject to atmospheric processes that can create varied classes of pollutants such as carboxylic acids, aldehydes, ketones, peroxyacetyl nitrate, and hydrocarbons. To adhere to indoor air quality standards, a number of techniques such as photocatalytic oxidation of various volatile organic compounds (VOCs) have been employed. Among these techniques, titania ($TiO_2$) based photocatalytic reactions have proven to be the best benchmark standard approach in the field of environmental applications. Over the last 45 years, $TiO_2$-based photocatalytic reactions have been explored for the degradation of various pollutants. This review discusses the indoor air quality profile, types of indoor pollutants, available indoor air cleaning approaches, and performance of $TiO_2$-based catalysts. Finally, we have presented the perspectives on the progress of $TiO_2$ induced photocatalysis for the purification of indoor air.

A Review of Photocatalytic Treatment for Various Air Pollutants

  • Reddy, P. Venkata Laxma;Kim, Ki-Hyun;Kim, Yong-Hyun
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.3
    • /
    • pp.181-188
    • /
    • 2011
  • Photocatalysis is a photochemical catalytic reaction which is a highly promising tool for the environmental cleanup process. It is very effective in treatment of environmental pollutants by its unique redox property. It has wide applications in the treatment of atmospheric pollutants (e.g., nitrogen dioxide, trichloroethylene, volatile organics, hydrogen sulfide, benzene, etc) through oxidative removal and by disinfection (aeromicro flora). In this research, the fundamental aspects of photocatalysis are described with respect to the composition of catalysts, experimental conditions (e.g., temperature, duration, etc), and interfering factors (e.g., catalyst deactivation).

A Study on the Control Performance for Hazardous Gases by Surface Discharge induced Plasma Chemical Process (연면방전의 플라즈마 화학처리에 의한 유해가스제어 성능에 관한 연구)

  • 이주상;김신도;김광영;김종호
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.11 no.2
    • /
    • pp.185-190
    • /
    • 1995
  • Recently, because of the worse of the air pollution, the excessive airtught of building and the inferiority of air conditioning system, the development of high efficiency air purification technology was enlarged to the environmental improvement of an indoor or a harmful working condition. The air purification technology has used chemical filters or charcoal filters or charcoal to remove hazardouse gaseous pollutants (SO$_{x}$, NO$_{x}$, NH$_{3}$, etc.) by air pollutant control technology, but they have many problems of high pressure loss, short life, wide space possession, and treatment of secondary wastes. For these reason, the object of reasearch shall be hazardous gaseous pollutants removal by the surface discharge induced plasma chemical process that is A.C. discharge of multistreams applied A.C. voltage and frequency between plane induced eletrode and line discharge eletrode of tungsten, platinum or titanium with a high purified alumina sheet having a film-like plane. As a result, the control performance for hazardous gaseous pollutants showed very high efficiency in the normal temperature and pressure. Also, after comtact oxidation decomposition of harmful gaseous pollutants, the remainded ozone concentration was found much lower than that of ACGIH or air pollution criteria in Korea.rea.

  • PDF

Characteristics of Air Pollutants Emission from Medium-duty Trucks Equipped EGR and SCR in Korea (국내 EGR과 SCR 장착 중형트럭 대기오염물질 배출 특성)

  • Son, Jihwan;Kim, Jounghwa;Jung, Sungwoon;Yoo, Heungmin;Hong, Heekyung;Mun, Sunhee;Choi, Kwangho;Lee, Jongtae;Kim, Jeongsoo
    • Journal of ILASS-Korea
    • /
    • v.21 no.3
    • /
    • pp.130-136
    • /
    • 2016
  • NOx and PM are important air pollutants as vehicle management policy aspect. Medium-duty truck is the main source of the pollutants although the vehicle market share is only 3.5%. National emission portion of NOx and PM form the mobile sourece are 14% and 16% respectively. In this study it was investigated that characteristics of air pollutants emission on medium duty truck equipped with EGR and SCR system. Vehicle's test reflected driving cycle on the chassis dynamometer, and applied test cycle was WHVC(World Harmonized Vehicle Cycle) mode. The test cycle include three segments, represent urban, rural and motorway driving. Based on the test results NOx, PM, HC were less emitted form SCR vehicle than EGR vehicle. And CO was less emitted form EGR vehicle than SCR vehicle due to CO oxidation reaction on DPF surface. And most air pollutants reduced as average vehicle speed increased. Pollutants were less emitted on motorway section than urban and rural sections. But highly NOx emission on motorway section was verified according to increased EGR ratio on fast vehicle speed. HC and CO additional emission was identified as 68%, 58% respectively during SCR vehicle's cold engine start emission test. NOx additional emission was detected by 24% on SCR vehicle's condition of engine cold start while not detected on vehicle equipped with EGR. SCR vehicle's additional NOx emission was derived from low reaction temperature during engine cold start condition. medium-duty truck emission characteristics were investigated in this study and expected to used to improve air pollutants management policy of medium-duty truck equipped with SCR & EGR.

An Effective Process for Removing Organic Compounds from Oily Sludge

  • Jing, Guolin;Luan, Mingming;Chen, Tingting;Han, Chunjie
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.5
    • /
    • pp.842-845
    • /
    • 2011
  • Wet air oxidation (WAO) of oily sludge was carried out using $Fe^{3+}$ as catalyst, placed in a 0.5 L batch autoclave in the temperature range of $250-330^{\circ}C$. Experiments were conducted to investigate the effects of temperature, the initial COD, reaction time, concentration of catalyst and $O_2$ excess (OE) on the oxidation of the oily sludge. The results showed that in the WAO 88.4% COD was achieved after 9 min reaction at temperature of $330^{\circ}C$, OE of 0.8 and the initial COD of 20000 mg/L. Temperature was found to have a significant impact on the oxidation of oily sludge. Adding a catalyst significantly improved the COD removal. Homogenous catalyst, $Fe^{3+}$, showed effective removal for pollutants. COD removal was 99.7% in the catalytic wet air oxidation (CWAO) over $Fe^{3+}$ catalyst. The results proved that the CWAO was an effective pretreatment method for the oily sludge.

Study for Reducing of Hazardous metals in Bottom Ash from Municipal Solid Waste Combustors(MSWC) of Korea (도시생활폐기물 소각로에서 발생되는 바닥재중의 유해 금속류 저감방안에 관한 연구)

  • Chung, David;Yun, Youog-Ja
    • Analytical Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.516-521
    • /
    • 2001
  • This research was for reducing leachated concentration of hazardous pollutants in bottom ash from municipal solid waste combustors(200 tons/day) of Korea. Lead and copper compounds were selected as main pollutants. For reducing of leachated level, optimal conditions were observed using air oxidation for lead compounds and water washing method for copper compounds. and it was observed stable pH range of bottom ash from analyzing lechated level by pH variation.

  • PDF

Long-term Trend Analysis of Key Criteria Air Pollutants over Air Quality Control Regions in South Korea using Observation Data and Air Quality Simulation (관측자료와 대기질 모사를 이용한 주요 기준성 대기오염물질의 권역별 장기변화 분석)

  • Ju, Hyeji;Kim, Hyun Cheol;Kim, Byeong-Uk;Ghim, Young Sung;Shin, Hye Jung;Kim, Soontae
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.1
    • /
    • pp.101-119
    • /
    • 2018
  • In this study, we analyzed long-term measurements and air quality simulation results of four criteria air pollutants ($PM_{10}$, $O_3$, $NO_2$, and $SO_2$) for 10 years, from 2006 to 2015, with emphasis on trends of annual variabilities. With the observation data, we conducted spatial interpolation using the Kriging method to estimate spatial distribution of pollutant concentrations. We also performed air quality simulations using the CMAQ model to consider the nonlinearity of the secondary air pollutants such as $O_3$ and the influence of long-range transport. In addition, these simulations are used to deduce the effect of long-term meteorological variations on trends of air quality changes because we fixed the emissions inventory while changing meteorological inputs. The nation-wide inter-annual variability of modeled $PM_{10}$ concentrations was $-0.11{\mu}g/m^3/yr$, while that of observed concentrations was $-0.84{\mu}g/m^3/yr$. For the Seoul Metropolitan Area, the inter-annual variability of observed $PM_{10}$ concentrations was $-1.64{\mu}g/m^3/yr$ that is two times rapid improvement compared to other regions. On the other hand, the inter-annual variability of observed $O_3$ concentrations is 0.62 ppb/yr which is larger than the simulated result of 0.13 ppb/yr. Magnitudes of differences between the modeled and observed inter-annual variabilities indicated that decreasing trend of $PM_{10}$ and increasing trend of $O_3$ are more influenced by emissions and oxidation states than meteorological conditions. We also found similar patterns in $NO_2$. However, $NO_2$ trends showed greater regional and seasonal differences than other pollutants. The analytic approach used in this study can be applicable to estimate changes in factors determining air quality such as emissions, weather, and surrounding conditions over a long term. Then analysis results can be used as important data for air quality management planning and evaluation of the chronic impact of air quality.

Development for UV/TiO2 Photocatalytic Oxidation Indoor Air Compound Process (광촉매/광산화를 이용한 VOCs 처리장치 개발)

  • Jeon, Bo-Kyung;Choi, Kum-Chan;Suh, Jeong-Min
    • Journal of Environmental Science International
    • /
    • v.15 no.9
    • /
    • pp.855-864
    • /
    • 2006
  • This study introduces a method to eliminate formaldehyde and benzene, toluene from indoor air by means of a photocatalytic oxidation reaction. In the method introduced, for the good performance of the reaction, the effect and interactions of the $TiO_2$ catalyst and ultraviolet in photocatalytic degradation on the reaction area, dosages of catalysts, humidity and light should be precisely examined and controled. Experiments has been carried out under various intensities of UV light and initial concentrations of formaldehyde, benzene and toluene to investigate the removal efficiency of the pollutants. Reactors in the experiments consist of an annular type Pyrex glass flow reactor and an 11W germicidal lamp. Results of the experiments showed reduction of formaldehyde, benzene and toluene in ultraviolet $/TiO_2/$ activated carbon processes (photooxidation-photocatalytic oxidation-adsorption processes), from 98% to 90%, from 98% to 93% and from 99% to 97% respectively. Form the results we can get a conclusion that a ultraviolet/Tio2/activated carbon system used in the method introduced is a powerful one for th treatment of formaldehyde, benzene and toluene of indoor spaces.

Wastewater Treatment Process Study for Used Diaper Recycling (사용 후 기저귀 재활용을 위한 폐수처리방안 연구)

  • Kim, Kyung Shin;Lee, Ho Sun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.2
    • /
    • pp.24-33
    • /
    • 2015
  • This study aims to suggest wastewater treatment options for diaper recycling by identifying characteristic analysis of wastewater from diaper recycling process and efficiency evaluation of wastewater treatment units. The wastewater characteristic analysis showed that the concentration of organic pollutants and ionic materials were very high comparing to seawater. Through the investigation of similar wastewater treatment, six treatment units were identified to reduce pollutants. It is found UF(ultra-filtration), DAF(dissolved air flotation), fenton oxidation, electro-coagulation and chemical-coagulation are effective in reducing organic pollutants while membrane system and ion exchanger are effective in reducing ionic materials. Even though the target of water quality should be secured in terms of managing organic pollutants level, the application of treatment unit for reducing ionic material needs lots of considerations. This result suggests that reuse of pulping wastewater after controlling organic pollutants is better than direct discharge of pulping wastewater. To select the appropriate wastewater treatment unit, an economic analysis about operation condition, wastewater flow, cost, efficiency should be considered.

The Aerosol Characteristics in Coexistence of Asian Dust and Haze during 15~17 March, 2009 in Seoul (짙은 황사와 연무가 공존한 대기의 에어러솔 특성 - 2009년 3월 15~17일 -)

  • Lee, Hae-Young;Kim, Seung-Bum;Kim, Su-Min;Song, Seung-Joo;Chun, Young-Sin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.2
    • /
    • pp.168-180
    • /
    • 2011
  • The variation of the physicochemical properties of atmospheric aerosols in coexistence of the heavy Asian Dust and Haze observed from $15^{th}$ to $17^{th}$ March 2009 in Seoul was scrutinized through the mass and ion concentration observations and synoptic weather analysis. Although the ratio of PM1.0/PM10 was constant at 0.3 (which is typical during Asian Dust period in Korea) during the measurement period, both PM10 and PM1.0 mass concentrations were 3~6 times and 2~4 times higher than that of clear days, respectively. Water-soluble ion components accounted for 30~50% of PM10 and 50~70% of PM1.0 mass concentration. One of the secondary pollutants, $NO_3^-$ was found to be associated with $Ca^{2+}$ and $Na^+$ in coarse mode indicating that the aerosol derived from natural source was affected by anthropogenic pollutants. While the acidity of the aerosols increased in fine mode when the stagnation of weather patterns was the strongest (March $16^{th}$), the alkalinity increased in coarse mode when new air masses arrived with a southwestern wind after ending a period of stagnation (March $17^{th}$). In the selected case, SOR (Sulfur Oxidation Ratio, $nSO_4^{2-}/[nSO_4^{2-}+nSO_2]$) and NOR (Nitrogen Oxidation Ratio, $nNO_3^-/[nNO_3^-+nNO_2]$) values of ion components were higher than the general values during Asian Dust period. These results imply that dust aerosols could be mixed with pollutants transported from China even in heavy Asian Dust cases in Korea.