DOI QR코드

DOI QR Code

Recent Advances in Titania-based Composites for Photocatalytic Degradation of Indoor Volatile Organic Compounds

  • Raza, Nadeem (Govt. Emerson College affiliated with Bahauddin Zakariya University) ;
  • Kim, Ki-Hyun (Department of Civil & Environmental Engineering, Hanyang University) ;
  • Agbe, Henry (Department of Materials Science and Metallurgy, University of Cambridge) ;
  • Kailasa, Suresh Kumar (Applied Chemistry Department, S. V. National Institute of Technology) ;
  • Szulejko, Jan E. (Department of Civil & Environmental Engineering, Hanyang University) ;
  • Brown, Richard J.C. (Environment Division, National Physical Laboratory)
  • Received : 2017.04.19
  • Accepted : 2017.08.23
  • Published : 2017.12.31

Abstract

Indoor air pollutants can cause severe health problems, specifically in terms of toxicological impacts on human. Every day, a complex mixture of many air pollutants is emitted from various sources and subject to atmospheric processes that can create varied classes of pollutants such as carboxylic acids, aldehydes, ketones, peroxyacetyl nitrate, and hydrocarbons. To adhere to indoor air quality standards, a number of techniques such as photocatalytic oxidation of various volatile organic compounds (VOCs) have been employed. Among these techniques, titania ($TiO_2$) based photocatalytic reactions have proven to be the best benchmark standard approach in the field of environmental applications. Over the last 45 years, $TiO_2$-based photocatalytic reactions have been explored for the degradation of various pollutants. This review discusses the indoor air quality profile, types of indoor pollutants, available indoor air cleaning approaches, and performance of $TiO_2$-based catalysts. Finally, we have presented the perspectives on the progress of $TiO_2$ induced photocatalysis for the purification of indoor air.

Keywords

References

  1. Abbas, N., Hussain, M., Russo, N., Saracco, G. (2011) Studies on the activity and deactivation of novel optimized $TiO_2$ nanoparticles for the abatement of VOCs. Chemical Engineering Journal 175, 330-340. https://doi.org/10.1016/j.cej.2011.09.115
  2. Anpo, M., Takeuchi, M. (2003) The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. Journal of Catalysis 216(1), 505-516. https://doi.org/10.1016/S0021-9517(02)00104-5
  3. Arana, J., Dona-Rodriguez, J., Gonzalez-Diaz, O., Rendon, E.T., Melian, J.H., Colon, G. Navio, J., Pena, J.P. (2004) Gas-phase ethanol photocatalytic degradation study with $TiO_2$ doped with Fe, Pd and Cu. Journal of Molecular Catalysis A: Chemical 215(1), 153-160. https://doi.org/10.1016/j.molcata.2004.01.020
  4. Arsac, F., Bianchi, D., Chovelon, J., Conchon, P., Ferronato, C., Lair A., Sleiman, M. (2008) Photocatalytic degradation of organic pollutants in water and in air. An analytical approach. Materials Science and Engineering: C 28(5), 722-725. https://doi.org/10.1016/j.msec.2007.10.053
  5. Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Taga, Y. (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293(5528), 269-271. https://doi.org/10.1126/science.1061051
  6. Augugliaro, V., Coluccia, S., Loddo, V., Marchese, L., Martra, G., Palmisano, L., Schiavello, M. (1999) Photocatalytic oxidation of gaseous toluene on anatase $TiO_2$ catalyst: Mechanistic aspects and FTIR investigation. Applied Catalysis B: Environmental 20(1), 15-27. https://doi.org/10.1016/S0926-3373(98)00088-5
  7. Auvinen, J., Wirtanen, L. (2008) The influence of photocatalytic interior paints on indoor air quality. Atmospheric Environment 42(18), 4101-4112. https://doi.org/10.1016/j.atmosenv.2008.01.031
  8. Baek, S.-O., Kim, Y.-S., Perry, R. (1997) Indoor air quality in homes, offices and restaurants in Korean urban areas indoor/outdoor relationships. Atmospheric Environment 31(4), 529-544. https://doi.org/10.1016/S1352-2310(96)00215-4
  9. Ballari, M., Carballada, J., Minen, R., Salvadores, F., Brouwers, H., Alfano, O., Cassano, A. (2016) Visible light $TiO_2$ photocatalysts assessment for air decontamination. Process Safety and Environmental Protection 101, 124-133. https://doi.org/10.1016/j.psep.2015.08.003
  10. Barea, E., Montoro, C., Navarro, J.A. (2014) Toxic gas removal-metal-organic frameworks for the capture and degradation of toxic gases and vapours. Chemical Society Reviews 43(16), 5419-5430. https://doi.org/10.1039/C3CS60475F
  11. Bianchi, C., Gatto, S., Pirola, C., Naldoni, A., Di Michele, A., Cerrato, G., Crocella, V., Capucci, V. (2014) Photocatalytic degradation of acetone, acetaldehyde and toluene in gas-phase: Comparison between nano and micro-sized $TiO_2$. Applied Catalysis B: Environmental 146, 123-130. https://doi.org/10.1016/j.apcatb.2013.02.047
  12. Boyjoo, Y., Sun, H., Liu, J., Pareek, V.K., Wang, S. (2017) A review on photocatalysis for air treatment: From catalyst development to reactor design. Chemical Engineering Journal 310, 537-559. https://doi.org/10.1016/j.cej.2016.06.090
  13. Butterworth, B.E. (2006) A classification framework and practical guidance for establishing a mode of action for chemical carcinogens. Regulatory Toxicology and Pharmacology 45(1), 9-23. https://doi.org/10.1016/j.yrtph.2006.01.011
  14. Cai, W., Gu, W., Zhu, L., Lv, W., Xia, C., Ding, B. (2014) Photocatalytic oxidation of gaseous acetone and ethanol mixtures over titanium dioxide powders. Bulgarian Chemical Communications 46(4), 911-917.
  15. Cao, L., Huang, A., Spiess, F.-J., Suib, S.L. (1999) Gas-phase oxidation of 1-butene using nanoscale $TiO_2$ photocatalysts. Journal of Catalysis 188(1), 48-57. https://doi.org/10.1006/jcat.1999.2596
  16. Chin, J.Y., Godwin, C., Parker, E., Robins, T., Lewis, T., Harbin, P., Batterman, S. (2014) Levels and sources of volatile organic compounds in homes of children with asthma. Indoor Air 24(4), 403-415. https://doi.org/10.1111/ina.12086
  17. Choi, W., Ko, J.Y., Park, H., Chung, J.S. (2001) Investigation on $TiO_2$-coated optical fibers for gas-phase photocatalytic oxidation of acetone. Applied Catalysis B: Environmental 31(3), 209-220. https://doi.org/10.1016/S0926-3373(00)00281-2
  18. Choi, W., Termin, A., Hoffmann, M.R. (1994) The role of metal ion dopants in quantum-sized $TiO_2$: Correlation between photoreactivity and charge carrier recombination dynamics. Journal of Physical Chemistry 98(51), 13669-13679. https://doi.org/10.1021/j100102a038
  19. Clark, A.N. (1990) Air purification in conventional submarines. Naval Engineers Journal 32(2), 215-229.
  20. Coronado, J.M., Fresno, F., Hernandez-Alonso, M.D., Portela, R. (2013) Design of advanced photocatalytic materials for energy and environmental applications. Springer.
  21. Da Costa Filho, B.M., Araujo, A.L., Silva, G.V., Boaventura, R.A., Dias, M.M., Lopes, J.C., Vilar, V.J. (2017) Intensification of heterogeneous $TiO_2$ photocatalysis using an innovative micro-meso-structured-photoreactor for n-decane oxidation at gas phase. Chemical Engineering Journal 310, 331-341. https://doi.org/10.1016/j.cej.2016.09.080
  22. Dan-Hardi, M., Serre, C., Frot, T., Rozes, L., Maurin, G., Sanchez, C., Ferey, G. (2009) A new photoactive crystalline highly porous titanium (iv) dicarboxylate. Journal of the American Chemical Society 131(31), 10857-10859. https://doi.org/10.1021/ja903726m
  23. Deng, X.-Q., Zhu, B., Li, X.-S., Liu, J.-L., Zhu, X., Zhu, A.-M. (2016) Visible-light photocatalytic oxidation of CO over plasmonic Au/$TiO_2$: Unusual features of oxygen plasma activation. Applied Catalysis B: Environmental 188, 48-55. https://doi.org/10.1016/j.apcatb.2016.01.055
  24. Dionysiou, D.D., Puma, G.L., Ye, J., Schneider, J., Bahnemann, D. (2016) Photocatalysis: Applications. Royal Society of Chemistry.
  25. Eiden-Assmann, S., Widoniak, J., Maret, G. (2004) Synthesis and characterization of porous and nonporous monodisperse colloidal $TiO_2$ particles. Chemistry of Materials 16(1), 6-11. https://doi.org/10.1021/cm0348949
  26. Fang, X.-L., Chen, C., Jin, M.-S., Kuang, Q., Xie, Z.-X., Xie, S.-Y., Huang, R.-B., Zheng, L.-S. (2009) Single-crystal-like hematite colloidal nanocrystal clusters: Synthesis and applications in gas sensors, photocatalysis and water treatment. Journal of Materials Chemistry 19(34), 6154-6160. https://doi.org/10.1039/b905034e
  27. Fiorenza, R., Bellardita, M., D'Urso, L., Compagnini, G., Palmisano, L., Scire, S. (2016) Au/$TiO_2$-$CeO_2$ catalysts for photocatalytic water splitting and VOCs oxidation reactions. Catalysts 6(8), 121. https://doi.org/10.3390/catal6080121
  28. Fisk, W.J., Rosenfeld, A.H. (1997) Estimates of improved productivity and health from better indoor environments. Indoor Air 7(3), 158-172. https://doi.org/10.1111/j.1600-0668.1997.t01-1-00002.x
  29. Fu, Y., Sun, D., Chen, Y., Huang, R., Ding, Z., Fu, X., Li, Z. (2012) An amine functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for $CO_2$ reduction. Angewandte Chemie 124(14), 3420-3423. https://doi.org/10.1002/ange.201108357
  30. Fujishima, A., Honda, K. (1972) $TiO_2$ photoelectrochemistry and photocatalysis. Nature 238(5358), 37-38. https://doi.org/10.1038/238037a0
  31. Gurunathan, K., Maruthamuthu, P., Sastri, M. (1997) Photocatalytic hydrogen production by dye-sensitized Pt/$SnO_2$ and Pt/$SnO_2$/$RuO_2$ in aqueous methyl viologen solution. International Journal of Hydrogen Energy 22(1), 57-62. https://doi.org/10.1016/S0360-3199(96)00075-4
  32. Hager, S., Bauer, R. (1999) Heterogeneous photocatalytic oxidation of organics for air purification by near UV irradiated titanium dioxide. Chemosphere 38(7), 1549-1559. https://doi.org/10.1016/S0045-6535(98)00375-0
  33. Haque, M.M., Bahnemann, D., Muneer, M. (2012) Photocatalytic degradation of organic pollutants: Mechanisms and kinetics. INTECH Open Access Publisher.
  34. Hay, S.O., Obee, T., Luo, Z., Jiang, T., Meng, Y., He, J., Murphy, S.C., Suib, S. (2015) The viability of photocatalysis for air purification. Molecules 20(1), 1319-1356. https://doi.org/10.3390/molecules20011319
  35. Hendon, C.H., Tiana, D., Fontecave, M., Sanchez, C.M., Darras, L., Sassoye, C., Rozes, L. Mellot-Draznieks, C., Walsh, A. (2013) Engineering the optical response of the titanium-mil-125 metal-organic framework through ligand functionalization. Journal of the American Chemical Society 135(30), 10942-10945. https://doi.org/10.1021/ja405350u
  36. Hernandez-Alonso, M.D., Fresno, F., Suarez, S., Coronado, J.M. (2009) Development of alternative photocatalysts to $TiO_2$: Challenges and opportunities. Energy & Environmental Science 2(12), 1231-1257. https://doi.org/10.1039/b907933e
  37. Herrmann, J.-M. (1995) Heterogeneous photocatalysis: An emerging discipline involving multiphase systems. Catalysis Today 24(1), 157-164. https://doi.org/10.1016/0920-5861(95)00005-Z
  38. Hoang, S., Berglund, S.P., Fullon, R.R. Minter, R.L., Mullins, C.B. (2013) Chemical bath deposition of vertically aligned $TiO_2$ nanoplatelet arrays for solar energy conversion applications. Journal of Materials Chemistry A 1(13), 4307-4315. https://doi.org/10.1039/c3ta01384g
  39. Hossain, M., Raupp, G.B., Hay, S.O., Obee, T.N. (1999) Three-dimensional developing flow model for photocatalytic monolith reactors. AIChE Journal 45(6), 1309-1321. https://doi.org/10.1002/aic.690450615
  40. Hu, W., Li, L., Li, G., Liu, Y., Withers, R.L. (2014) Atomic-scale control of $TiO_6$ octahedra through solution chemistry towards giant dielectric response. Scientific Reports, 4.
  41. Hu, Y., Huang, Z., Zhou, L., Wang, D., Li, G. (2014) Synthesis of nanoscale titania embedded in mil101 for the adsorption and degradation of volatile pollutants with thermal desorption gas chromatography and mass spectrometry detection. Journal of Separation Science 37 (12), 1482-1488. https://doi.org/10.1002/jssc.201400100
  42. Huang, H., Liu, G., Zhan, Y., Xu, Y., Lu, H., Huang, H., Feng, Q., Wu, M. (2017) Photocatalytic oxidation of gaseous benzene under VUV irradiation over $TiO_2$/zeolites catalysts. Catalysis Today 281, 649-655. https://doi.org/10.1016/j.cattod.2016.07.005
  43. Huang, Y., Ho, S.S.H., Lu, Y., Niu, R., Xu, L. Cao, J., Lee, S. (2016) Removal of indoor volatile organic compounds via photocatalytic oxidation: A short review and prospect. Molecules 21(1), 56. https://doi.org/10.3390/molecules21010056
  44. Hussain, M., Russo, N., Saracco, G. (2011) Photocatalytic abatement of VOCs by novel optimized $TiO_2$ nanoparticles. Chemical Engineering Journal 166(1), 138-149. https://doi.org/10.1016/j.cej.2010.10.040
  45. Ireland, C.P., Ducati, C. (2015) Investigating the photo-oxidation of model indoor air pollutants using field asymmetric ion mobility spectrometry. Journal of Photochemistry and Photobiology A: Chemistry 312, 1-7. https://doi.org/10.1016/j.jphotochem.2015.07.008
  46. Ismail, A.A., Bahnemann, D.W. (2012) Pt colloidal accommodated into mesoporous $TiO_2$ films for photooxidation of acetaldehyde in gas phase. Chemical Engineering Journal 203, 174-181. https://doi.org/10.1016/j.cej.2012.07.022
  47. Jimmy, C.Y., Chan, L.Y. (1998) Photocatalytic degradation of a gaseous organic pollutant. Journal of Chemical Education 75(6), 750. https://doi.org/10.1021/ed075p750
  48. Jo, W.-K., Park, K.-H. (2004) Heterogeneous photocatalysis of aromatic and chlorinated volatile organic compounds (VOCs) for non-occupational indoor air application. Chemosphere 57(7), 555-565. https://doi.org/10.1016/j.chemosphere.2004.08.018
  49. Kang, M.G., Han, H.-E., Kim, K.-J. (1999) Enhanced photodecomposition of 4-chlorophenol in aqueous solution by deposition of CdS on $TiO_2$. Journal of Photochemistry and Photobiology A: Chemistry 125(1), 119-125. https://doi.org/10.1016/S1010-6030(99)00092-1
  50. Kartheuser, B., Costarramone, N., Pigot, T., Lacombe, S. (2012) Normacat project: Normalized closed chamber tests for evaluation of photocatalytic voc treatment in indoor air and formaldehyde determination. Environmental Science and Pollution Research 19(9), 3763-3771. https://doi.org/10.1007/s11356-012-0797-0
  51. Kaur, R., Pal, B. (2015) Plasmonic coinage metal $TiO_2$ hybrid nanocatalysts for highly efficient photocatalytic oxidation under sunlight irradiation. New Journal of Chemistry 39(8), 5966-5976. https://doi.org/10.1039/C5NJ00450K
  52. Khataee, A., Aleboyeh, H., Aleboyeh, A. (2009) Crystallite phase-controlled preparation, characterisation and photocatalytic properties of titanium dioxide nanoparticles. Journal of Experimental Nanoscience 4(2), 121-137. https://doi.org/10.1080/17458080902929945
  53. Klepeis, N.E., Nelson, W.C., Ott, W.R., Robinson, J.P., Tsang, A.M., Switzer, P., Behar, J.V., Hern, S.C., Engelmann, W.H. (2001) The national human activity pattern survey (nhaps): A resource for assessing exposure to environmental pollutants. Journal of Exposure Analysis and Environmental Epidemiology 11(3), 231-252. https://doi.org/10.1038/sj.jea.7500165
  54. Kuo, C.-S., Tseng, Y.-H., Huang, C.-H., Li, Y.-Y. (2007) Carbon-containing nano-titania prepared by chemical vapor deposition and its visible-light-responsive photocatalytic activity. Journal of Molecular Catalysis A: Chemical 270(1), 93-100. https://doi.org/10.1016/j.molcata.2007.01.031
  55. Lan, L., Wargocki, P., Wyon, D.P., Lian, Z. (2011) Effects of thermal discomfort in an office on perceived air quality, sbs symptoms, physiological responses, and human performance. Indoor Air 21(5), 376-390. https://doi.org/10.1111/j.1600-0668.2011.00714.x
  56. Lee, K., Mazare, A., Schmuki, P. (2014) One-dimensional titanium dioxide nanomaterials: nanotubes. Chemical Reviews 114(19), 9385-9454. https://doi.org/10.1021/cr500061m
  57. Lee, S.-C., Kwok, N.-H., Guo, H., Hung, W.-T. (2003) The effect of wet film thickness on VOC emissions from a finishing varnish. Science of the Total Environment 302(1), 75-84. https://doi.org/10.1016/S0048-9697(02)00340-6
  58. Li, X., Chen, X., Niu, H., Han, X., Zhang, T., Liu, J., Lin, H., Qu, F. (2015) The synthesis of CdS/$TiO_2$ hetero-nanofibers with enhanced visible photocatalytic activity. Journal of Colloid and Interface Science 452, 89-97. https://doi.org/10.1016/j.jcis.2015.04.034
  59. Li, Y.F., Liu, Z.P. (2016) Structure and water oxidation activity of 3rd metal oxides. Wiley Interdisciplinary Reviews: Computational Molecular Science 6(1), 47-64. https://doi.org/10.1002/wcms.1236
  60. Lian, X., Yan, B. (2016) A postsynthetic modified mof hybrid as heterogeneous photocatalyst for ${\alpha}$-phenethyl alcohol and reusable fluorescence sensor. Inorganic Chemistry 55(22), 11831-11838. https://doi.org/10.1021/acs.inorgchem.6b01928
  61. Lin, L., Chai, Y., Zhao, B., Wei, W., He, D., He, B., Tang, Q. (2013) Photocatalytic oxidation for degradation of VOCs. Open Journal of Inorganic Chemistry, 3(1), 14. https://doi.org/10.4236/ojic.2013.31003
  62. Litter, M.I. (1999) Heterogeneous photocatalysis: Transition metal ions in photocatalytic systems. Applied Catalysis B: Environmental 23(2), 89-114. https://doi.org/10.1016/S0926-3373(99)00069-7
  63. Liu, Y., Dong, S., Ding, B. (2006) Investigation of the photocatalytic degradation of ethanol and acetone. Energy Systems Laboratory (http://esl.tamu.edu); Texas A&M University (http://www.tamu.edu).
  64. Luengas, A., Barona, A., Hort, C., Gallastegui, G., Platel, V., Elias, A. (2015) A review of indoor air treatment technologies. Reviews in Environmental Science and Bio/Technology 14(3), 499-522. https://doi.org/10.1007/s11157-015-9363-9
  65. Malley, C.S., Heal, M.R., Braban, C.F. (2016) Insights from a chronology of the development of atmospheric composition monitoring networks since the 1800s. Atmosphere 7(12), 160. https://doi.org/10.3390/atmos7120160
  66. Marchelek, M., Grabowska, E., Klimczuk, T., Lisowski, W., Zaleska-Medynska, A. (2017) Various types of semiconductor photocatalysts modified by CdTe qds and Pt nps for toluene photooxidation in the gas phase under visible light. Applied Surface Science 393, 262-275. https://doi.org/10.1016/j.apsusc.2016.10.009
  67. Megahed, N.A. (2014) Photocatalytic technology in architectural context: From science to societal debates. Indoor and Built Environment 23(4), 603-614. https://doi.org/10.1177/1420326X13481236
  68. Mehos, M.S., Turchi, C.S. (1993) Field testing solar photocatalytic detoxification on TCE-contaminated groundwater. Environmental Progress 12(3), 194-199. https://doi.org/10.1002/ep.670120308
  69. Mo, J., Zhang, Y., Xu, Q., Lamson, J.J., Zhao, R. (2009) Photocatalytic purification of volatile organic compounds in indoor air: A literature review. Atmospheric Environment 43(14), 2229-2246. https://doi.org/10.1016/j.atmosenv.2009.01.034
  70. Nagarajan, S., Skillen, N.C., Fina, F., Zhang, G., Randorn, C., Lawton, L.A., Irvine, J.T., Robertson, P.K. (2017) Comparative assessment of visible light and uv active photocatalysts by hydroxyl radical quantification. Journal of Photochemistry and Photobiology A: Chemistry 334, 13-19. https://doi.org/10.1016/j.jphotochem.2016.10.034
  71. Nah, Y.C., Paramasivam, I., Schmuki, P. (2010) Doped $TiO_2$ and $TiO_2$ nanotubes: Synthesis and applications. Chem Phys Chem 11(13), 2698-2713. https://doi.org/10.1002/cphc.201000276
  72. Nath, R.K., Zain, M., Jamil, M. (2016) An environment-friendly solution for indoor air purification by using renewable photocatalysts in concrete: A review. Renewable and Sustainable Energy Reviews 62, 1184-1194. https://doi.org/10.1016/j.rser.2016.05.018
  73. Nishijima, K., Ohtani, B., Yan, X., Kamai, T.-a., Chiyoya, T., Tsubota, T., Murakami, N., Ohno, T. (2007) Incident light dependence for photocatalytic degradation of acetaldehyde and acetic acid on s-doped and n-doped $TiO_2$ photocatalysts. Chemical Physics 339(1), 64-72. https://doi.org/10.1016/j.chemphys.2007.06.014
  74. Noguchi, T., Fujishima, A., Sawunyama, P., Hashimoto, K. (1998) Photocatalytic degradation of gaseous formaldehyde using $TiO_2$ film. Environmental Science & Technology 32(23), 3831-3833. https://doi.org/10.1021/es980299+
  75. Noorjahan, M., Kumari, V.D., Subrahmanyam, M., Boule, P. (2004) A novel and efficient photocatalyst: $TiO_2$-HZSM-5 combinate thin film. Applied Catalysis B: Environmental 47(3), 209-213. https://doi.org/10.1016/j.apcatb.2003.08.004
  76. Obee, T.N., Hay, S.O. (1997) Effects of moisture and temperature on the photooxidation of ethylene on titania. Environmental Science & Technology 31(7), 2034-2038. https://doi.org/10.1021/es960827m
  77. Ola, O., Maroto-Valer, M.M. (2015) Review of material design and reactor engineering on $TiO_2$ photocatalysis for $CO_2$ reduction. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 24, 16-42. https://doi.org/10.1016/j.jphotochemrev.2015.06.001
  78. Oliveira, A., Saggioro, E.M., Moreira, J.C., Ferreira, L.F.V., Pavesi, T. (2012) Solar photochemistry for environmental remediation-advanced oxidation processes for industrial wastewater treatment. INTECH Open Access Publisher.
  79. O’regan, B., Grfitzeli, M. (1991) High-efficiency solar cell based on dye-sensitized colloidal $TiO_2$ films. Nature 353, 737-740. https://doi.org/10.1038/353737a0
  80. Palmer, R., Doan, T., Lloyd, P., Jarvis, B., Ahmed, N. (2002) Reduction of $TiO_2$ with hydrogen plasma. Plasma Chemistry and Plasma Processing 22(3), 335-350. https://doi.org/10.1023/A:1015378931111
  81. Paulauskas, I.E., Modeshia, D.R., Ali, T.T., El-Mossalamy, E.H., Obaid, A.Y., Basahel, S.N., Al-Ghamdi, A.A., Sartain, F.K. (2013) Photocatalytic activity of doped and undoped titanium dioxide nanoparticles synthesised by flame spray pyrolysis. Platinum Metals Review 57(1), 32-43. https://doi.org/10.1595/147106713X659109
  82. Pelaez, M., Baruwati, B., Varma, R.S., Luque, R., Dionysiou, D.D. (2013) Microcystin-lr removal from aqueous solutions using a magnetically separable n-doped $TiO_2$ nanocomposite under visible light irradiation. Chemical Communications 49(86), 10118-10120. https://doi.org/10.1039/c3cc44415e
  83. Pelaez, M., Nolan, N.T., Pillai, S.C., Seery, M.K., Falaras, P., Kontos, A.G., Dunlop, P.S., Hamilton, J.W., Byrne, J.A., Oshea, K. (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Applied Catalysis B: Environmental 125, 331-349. https://doi.org/10.1016/j.apcatb.2012.05.036
  84. Petronella, F., Truppi, A., Ingrosso, C., Placido, T., Striccoli, M., Curri, M.L., Agostiano, A., Comparelli, R. (2017) Nanocomposite materials for photocatalytic degradation of pollutants. Catalysis Today 281, 85-100. https://doi.org/10.1016/j.cattod.2016.05.048
  85. Phillips, L., Raupp, G.B. (1992) Infrared spectroscopic investigation of gas solid heterogeneous photocatalytic oxidation of trichloroethylene. Journal of Molecular Catalysis 77(3), 297-311. https://doi.org/10.1016/0304-5102(92)80209-Y
  86. Reddy, P.V.L., Kim, K.H. (2015) A review of photochemical approaches for the treatment of a wide range of pesticides. Journal of Hazardous Materials 285, 325-335. https://doi.org/10.1016/j.jhazmat.2014.11.036
  87. Redlich, C.A., Sparer, J., Cullen, M.R. (1997) Sick-building syndrome. The Lancet 349 (9057), 1013-1016. https://doi.org/10.1016/S0140-6736(96)07220-0
  88. Ren, L., Mao, M., Li, Y., Lan, L., Zhang, Z., Zhao, Z. (2016) Novel photothermocatalytic synergetic effect leads to high catalytic activity and excellent durability of anatase $TiO_2$ nanosheets with dominant {001} facets for benzene abatement. Applied Catalysis B: Environmental 198, 303-310. https://doi.org/10.1016/j.apcatb.2016.05.073
  89. Sakthivel, S., Shankar, M. Palanichamy, M., Arabindoo, B., Bahnemann, D., Murugesan, V. (2004) Enhancement of photocatalytic activity by metal deposition: Characterisation and photonic efficiency of Pt, Au and Pd deposited on $TiO_2$ catalyst. Water Research 38(13), 3001-3008. https://doi.org/10.1016/j.watres.2004.04.046
  90. Sattar, S.A., Wright, K.E., Zargar, B., Rubino, J.R., Ijaz, M.K. (2016) Airborne infectious agents and other pollutants in automobiles for domestic use: Potential health impacts and approaches to risk mitigation. Journal of Environmental and Public Health 2016.
  91. Seto, K.C., Güneralp, B., Hutyra, L.R. (2012) Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences 109(40), 16083-16088. https://doi.org/10.1073/pnas.1211658109
  92. Severs, Y. (2006) A baseline air quality assessment onboard a victoria class submarine: HMCS Windsor. (No. DRDC-TR-2006-087). Defence Research and Development TORONTO (CANADA).
  93. Shaheen, S.A., Lipman, T.E. (2007) Reducing greenhouse emissions and fuel consumption: Sustainable approaches for surface transportation. Iatss Research 31(1), 6-20.
  94. Shi, J., Chen, J., Li, G., An, T., Yamashita, H. (2017) Fabrication of Au/$TiO_2$ nanowires@ carbon fiber paper ternary composite for visible-light photocatalytic degradation of gaseous styrene. Catalysis Today 281, 621-629. https://doi.org/10.1016/j.cattod.2016.06.026
  95. Shrivastava, V. (2012) Photocatalytic degradation of methylene blue dye and chromium metal from wastewater using nanocrystalline $TiO_2$ semiconductor. Archives of Applied Science Research 4(3), 1244-1254.
  96. St. John, M.R., Furgala, A.J., Sammells, A.F. (1983) Hydrogen generation by photocatalytic oxidation of glucose by platinized n-titania powder. The Journal of Physical Chemistry 87(5), 801-805. https://doi.org/10.1021/j100228a021
  97. Stroyuk, O.L., Ermokhina, N.I., Korzhak, G.V., Andryushina, N.S., Shvalagin, V.V., Kozytskiy, A.V., Manoryk, P.A., Barakov, R.Y., Kuchmiy, S.Y., Shcherbatyuk, M. (2017) Photocatalytic and photoelectrochemical properties of hierarchical mesoporous $TiO_2$ microspheres produced using a crown template. Journal of Photochemistry and Photobiology A: Chemistry 334, 26-35. https://doi.org/10.1016/j.jphotochem.2016.10.039
  98. Subramanian, V., Wolf, E.E., Kamat, P.V. (2003) Green emission to probe photoinduced charging events in ZnO-Au nanoparticles. Charge distribution and fermi-level equilibration. The Journal of Physical Chemistry B 107(30), 7479-7485. https://doi.org/10.1021/jp0275037
  99. Sun, Y., Chemelewski, W.D., Berglund, S.P., Li, C., He, H., Shi, G., Mullins, C.B. (2014) Antimony-doped tin oxide nanorods as a transparent conducting electrode for enhancing photoelectrochemical oxidation of water by hematite. ACS Applied Materials & Interfaces 6(8), 5494-5499. https://doi.org/10.1021/am405628r
  100. Tiwari, A., Mondal, I., Ghosh, S., Chattopadhyay, N., Pal, U. (2016) Fabrication of mixed phase $TiO_2$ heterojunction nanorods and their enhanced photoactivities. Physical Chemistry Chemical Physics 18(22), 15260-15268. https://doi.org/10.1039/C6CP00486E
  101. Umebayashi, T., Yamaki, T., Itoh, H., Asai, K. (2002) Band gap narrowing of titanium dioxide by sulfur doping. Applied Physics Letters 81(3), 454-456. https://doi.org/10.1063/1.1493647
  102. USEPA (2017) https://www.epa.gov/indoor-air-quality-iaq/volatile-organic-compounds-impact-indoor-air-quality
  103. Wang, H., Zhang, L., Chen, Z., Hu, J., Li, S., Wang, Z., Liu, J., Wang, X. (2014) Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chemical Society Reviews 43(15), 5234-5244. https://doi.org/10.1039/C4CS00126E
  104. Wang, S., Ang, H., Tade, M.O. (2007) Volatile organic compounds in indoor environment and photocatalytic oxidation: State of the art. Environment International 33(5), 694-705. https://doi.org/10.1016/j.envint.2007.02.011
  105. Wang, X., Yu, J.C., Chen, Y., Wu, L., Fu, X. (2006) $ZrO_2$-modified mesoporous nanocrystalline $TiO_2$-x Nx as efficient visible light photocatalysts. Environmental Science & Technology 40(7), 2369-2374. https://doi.org/10.1021/es052000a
  106. Weon, S., Choi, J., Park, T., Choi, W. (2017) Freestanding doubly open-ended $TiO_2$ nanotubes for efficient photocatalytic degradation of volatile organic compounds. Applied Catalysis B: Environmental 205, 386-392. https://doi.org/10.1016/j.apcatb.2016.12.048
  107. WHO (2014) Public health, environmental and social determinants of health (PHE), geneva.
  108. Wong, R.J., Liu, S., Ng, Y.H., Amal, R. (2016) Fabrication of high aspect ratio and open-ended $TiO_2$ nanotube photocatalytic arrays through electrochemical anodization. AIChE Journal 62(2), 415-420. https://doi.org/10.1002/aic.15117
  109. Wu, N.-L., Lee, M.-S. (2004) Enhanced $TiO_2$ photocatalysis by Cu in hydrogen production from aqueous methanol solution. International Journal of Hydrogen Energy 29(15), 1601-1605. https://doi.org/10.1016/j.ijhydene.2004.02.013
  110. Yu, J., Yu, X., Huang, B., Zhang, X., Dai, Y. (2009) Hydrothermal synthesis and visible-light photocatalytic activity of novel cage-like ferric oxide hollow spheres. Crystal Growth and Design 9(3), 1474-1480. https://doi.org/10.1021/cg800941d
  111. Yu, J.C., Ho, W., Yu, J., Yip, H., Wong, P.K., Zhao, J. (2005) Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania. Environmental Science & Technology 39(4), 1175-1179. https://doi.org/10.1021/es035374h
  112. Zheng, Z., Huang, B., Qin, X., Zhang, X., Dai, Y. (2011) Facile synthesis of $SrTiO_3$ hollow microspheres built as assembly of nanocubes and their associated photocatalytic activity. Journal of Colloid and Interface Science 358(1), 68-72. https://doi.org/10.1016/j.jcis.2011.02.032
  113. Zuo, G.-M., Cheng, Z.-X., Chen, H., Li, G.-W., Miao, T. (2006) Study on photocatalytic degradation of several volatile organic compounds. Journal of Hazardous Materials 128(2), 158-163. https://doi.org/10.1016/j.jhazmat.2005.07.056

Cited by

  1. Electroadsorptive Removal of Gaseous Pollutants vol.9, pp.6, 2019, https://doi.org/10.3390/app9061162
  2. Enhanced Visible and Ultraviolet Light-Induced Gas-Phase Photocatalytic Activity of TiO2 Thin Films Modified by Increased Amount of Acetylacetone in Precursor Solution for Spray Pyrolysis vol.10, pp.9, 2020, https://doi.org/10.3390/catal10091011
  3. A critical innovation of photocatalytic degradation for toxic chemicals and pathogens in air vol.100, pp.None, 2021, https://doi.org/10.1016/j.jiec.2021.05.012