• Title/Summary/Keyword: Oxidation kinetics

Search Result 271, Processing Time 0.022 seconds

Corrosion Monitoring of PEO-Pretreated Magnesium Alloys

  • Gnedenkov, A.S.;Sinebryukhov, S.L.;Mashtalyar, D.V.;Gnedenkov, S.V.;Sergienko, V.I.
    • Corrosion Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.151-159
    • /
    • 2017
  • The MA8 alloy (formula Mg-Mn-Се) has been shown to have greater corrosion stability than the VMD10 magnesium alloy (formula Mg-Zn-Zr-Y) in chloride-containing solutions by Scanning Vibrating Electrode Technique (SVET) and by optical microscopy, gravimetry, and volumetry. It has been established that the crucial factor for the corrosion activity of these samples is the occurrence of microgalvanic coupling at the sample surface. The peculiarities of the kinetics and mechanism of the corrosion in the local heterogeneous regions of the magnesium alloy surface were investigated by localized electrochemical techniques. The stages of the corrosion process in artificial defects in the coating obtained by plasma electrolytic oxidation (PEO) at the surface of the MA8 magnesium alloy were also studied. The analysis of the experimental data enabled us to determine that the corrosion process in the defect zone develops predominantly at the magnesium/coating interface. Based on the measurements of the corrosion rate of the samples with PEO and composite polymer-containing coatings, the best anticorrosion properties were displayed by the composite polymer-containing coatings.

Study on n-Butane Autothermal Reforming for Portable Fuel Cell (휴대용 연료전지를 위한 부탄 자열개질에 관한 연구)

  • Bae, Gyu-Jong;Kang, In-Young;Lim, Sung-Kwang;Bae, Joong-Myeon;Kim, Ju-Yong;Lee, Chan-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.11 s.254
    • /
    • pp.1123-1130
    • /
    • 2006
  • This study discusses about research efforts of hydrogen generation from hydrocarbon(e.g., diesel, gasoline, natural gas, and LPG), especially, butane reforming by using Autothermal Reforming Reaction (ATR) technology. Several catalysts were selected for butane ATR. Thermodynamic reactor conditions (temperature, $O_2$/C, S/C) are varied and reforming characteristics of 2 catalysts (Pt and Rh on ceramic supports) and 1 commercial catalyst (FCR-HC35) have been examined. To understand reaction behaviors in an ATR reactor comprehensively, temperature profiles of reactor were observed. By mass transfer limitation, fuel conversion decreases when GHSV increases. Significant temperature variation along the reactor was observed and it was mainly due reaction kinetics difference between exothermic oxidation and endothermic reforming reaction.

Electrochemical Analysis on Flow-Accelerated Corrosion Behavior of SA106 Gr.C Steel in Alkaline Solution

  • Kim, Jun Hwan;Kim, In Sup;Chung, Han Sub
    • Corrosion Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.41-46
    • /
    • 2003
  • Flow-Accelerated Corrosion behavior concerning both activation and mass transfer process of SA106 Gr.C steel was studied using rotating cylinder electrode in room temperature alkaline solution by DC and AC electrochemical techniques. Passive film was tanned from pH 9.8 by step oxidation of ferrous product into hydroxyl compound. Corrosion potential shifted slightly upward with rotating velocity through the diffusion of cathodic species. Corrosion current density increased with rotating velocity in pH 6.98, while it soon saturated from 1000 rpm at above pH 9.8. On the other hand the limiting current increased with rotating speed regardless of pH values. It seems that activation process, which represents formation of passive film on the bare metal surface, controls the entire corrosion kinetics

EFFECTS OF H2O2, TURBIDITY AND METALS ON SONOCHEMICAL DECOMPOSITION OF HUMIC SUBSTANCES IN WASTEWATER EFFLUENT

  • Kim, Il-Kyu
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.3
    • /
    • pp.271-282
    • /
    • 2002
  • The sonochemical process has been applied as a treatment method to investigate its effect on the decomposition of humic substances (HS). The reaction kinetics and mechanisms in the process of sonochemical treatment for humic substances in wastewater have also been discussed. It was observed that the metal ions such Fe(II) and Mn(II) showed catalytic effects, while Al(III), Ca(II), and Mg(II) had inhibitory effects on the decomposition of humic substances in sonochemical reaction with hydrogen peroxide. Experimental results also showed factors such as hydrogen peroxide dose affected the formation of disinfection by-products. Two trihalomethanes, chloroform and dichlorobromomethane were formed as major disinfection by-products during chlorination. The depolymerization and the radical reaction of HS radicals appear to occur simultaneously. The final step of the reaction is the conversion of organic acids to carbon dioxide.

Pressure Effects on Zircaloy-4 Steamside Corrosion and Hydrogen Pick-up

  • Ok, Young-kil;Kim, Yong-soo
    • Nuclear Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.396-402
    • /
    • 1998
  • Experiments on the steamside corrosion and hydrogen pick-up of Zircaloy-4 under high pressure up to 10.3MPa are carried out to estimate the pressure effects on the kinetics. Temperature and reaction time are determined to be 37$0^{\circ}C$ and 72hours for the pre-transition test and $700^{\circ}C$ and 210minutes for the post-transition test, respectively. Results show that under 10.3MPa pressure the oxidation reaction is 50% and 100% enhanced in the pre-and the post-transition regime, respectively. Total amount of hydrogen uptake in the reaction is proportionally increased as corrosion weight gain is elevated. However, pick-up fraction is not affected by the high pressure. The fraction is almost twice greater than that in the waterside corrosion. Edges in the specimens play a certain role in the enhancement, especially in the post-transition regime. To identify physical property changes of oxide film such as micro-cracks or micro-pores, careful and thorough examination must be needed with some special techniques.

  • PDF

A Study on the Catalytic Oxidation Reaction of Carbon Monoxide with Nickel Oxide (NiO 촉매에 의한 CO 산화반응에 관한 연구)

  • Jae Shi Choi;Keu Hong Kim
    • Journal of the Korean Chemical Society
    • /
    • v.13 no.4
    • /
    • pp.241-247
    • /
    • 1969
  • The catalytic reaction between carbon monoxide and oxygen was investigated with the various nickel oxide catalysts at different partial pressures of carbon monoxide and oxygen and at reaction temperatures in the region of 120$^{circ}$to 250$^{circ}C$. The reaction has the highest rate with the nickel oxide catalyst which is sintered at low temperature. A reaction mechanism to explain the data is derived. From the Arrhenius equation, the activation energies in the region of experimental temperatures are found to be from 5.49 to 9.15 kcal/mole. The concentration of excess oxygen in the nickel oxide seems to vary according to the sintering temperatures and periods and is the controlling factor in determining the type of kinetics followed by the catalytic reaction.

  • PDF

Sonochemical Reaction Mechanism of a Polycyclic Aromatic Sulfur Hydrocarbon in Aqueous Phase

  • Kim, Il-Kyu;Jung, Oh-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.7
    • /
    • pp.990-994
    • /
    • 2002
  • Hydroxybenzothiophenes, dihydroxy-benzothiophenes, and benzothiophenedione were identified as inter-mediates of benzothiophene (BT) exposed to ultrasonic irradiation. It is proposed that benzothiophene is oxidized by OH radical to sequentially for m hydroxybenzothiophenes, dihydroxybenzothiophenes, and benzothiophenedione. Benzothiophene is decomposed rapidly following pseudo-first-order kinetics in a first-order manner by ultrasonic irradiation in aqueous solution. The toxicity of sonochemically treated solutions was checked by E. coli and a less inhibition in bacterial respiration was observed from the 120-min treated benzothiophene sample than from the untreated benzothiophene sample. Also evolution of carbon dioxide and sulfite was observed during ultrasonic reaction. A pathway for ultrasonic decomposition of benzothiophene in aqueous solution is proposed.

전기집진기술의 현황과 장래전망(I)

  • 고명삼;이달우
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.11 no.1
    • /
    • pp.24-33
    • /
    • 1997
  • In this paper, aging of insulating oil in pole transformer has been studied by performing accelerated thermal aging test. Dissolved gases were extracted by air bubbling method. Concentration of dissolved gases were modified by extraction ratio of each gases in insulting oil. Aging of insulting materials were proceeded by thermal degradation and oxidation reaction. Both of the reactions followed zeroth order kinetics. Formation rate equations for hydrocarbons, carbon oxides, and hydrogen were derived. It was conformed by gas analysis and UV-visible spectrophotometric method that iron core and copper coil in pole transformer act as catalyst during the aging process.

  • PDF

Peroxidase Activity of Cytochrome c

  • Kim, Nam-Hoon;Jeong, Moon-Sik;Choi, Soo-Young;Kang, Jung-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.12
    • /
    • pp.1889-1892
    • /
    • 2004
  • The peroxidase activity of cytochrome c was studied by using a chromogen, 2,2'-azinobis-(2-ethylbenzthiazoline-6-sulfonate) (ABTS). Initial rate of ABTS oxidation formation was linear with respect to the concentration of cytochrome c between 2.5-10 ${\mu}$M and $H_2O_2$ between 0.1-0.5 mM. The optimal pH for the peroxidase activity of cytochrome c was 7.0-8.5. The peroxidase activity retained about 40% of the maximum activity when exposed at 60 $^{\circ}C$. for 10 min. The peroxidase activity showed a typical Michaelis-Menten kinetics for $H_2O_2$ which Km value was 29.6 mM. Radical scavengers inhibited the peroxidase activity of cytochrome c. The peroxidase activity was significantly inhibited by the low concentration of iron chelator, deferoxamine. The results suggested that the peroxidase activity was associated with iron in the heme of cytochrome c.

A Numerical Study of Combustion Characteristics for HCCI Engine with Detailed Diesel Surrogate Chemical Mechanism (Diesel Surrogate 상세 반응 기구를 이용한 HCCI 엔진의 연소 특성에 관한 수치해석 연구)

  • Lee, Won-Jun;Lee, Seung-Ro;Lee, Chang-Eon
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.2
    • /
    • pp.9-15
    • /
    • 2011
  • Homogeneous charge compression ignition(HCCI) is the best concept able to provide low NOx and PM in diesel engine emissions. This new alternative combustion process is mainly controlled by chemical kinetics in comparison with the conventional combustion in internal combustion engine. In this paper, combustion characteristics of HCCI engine with suggested diesel surrogate(heptane/toluene mixture fuel) reaction mechanism were numerically investigated by heptane/toluene mixture ratio and EGR ratio. As results, the ignition timing became faster with increasing of heptane, and an initial oxidation and the ignition timing of the mixture fuel were affected by heptane and toluene, respectively.