Browse > Article
http://dx.doi.org/10.5012/bkcs.2004.25.12.1889

Peroxidase Activity of Cytochrome c  

Kim, Nam-Hoon (Department of Genetic Engineering, Cheongju University)
Jeong, Moon-Sik (Department of Genetic Engineering, Cheongju University)
Choi, Soo-Young (Department of Genetic Engineering, Division of Life Sciences, Hallym University)
Kang, Jung-Hoon (Department of Genetic Engineering, Cheongju University)
Publication Information
Abstract
The peroxidase activity of cytochrome c was studied by using a chromogen, 2,2'-azinobis-(2-ethylbenzthiazoline-6-sulfonate) (ABTS). Initial rate of ABTS oxidation formation was linear with respect to the concentration of cytochrome c between 2.5-10 ${\mu}$M and $H_2O_2$ between 0.1-0.5 mM. The optimal pH for the peroxidase activity of cytochrome c was 7.0-8.5. The peroxidase activity retained about 40% of the maximum activity when exposed at 60 $^{\circ}C$. for 10 min. The peroxidase activity showed a typical Michaelis-Menten kinetics for $H_2O_2$ which Km value was 29.6 mM. Radical scavengers inhibited the peroxidase activity of cytochrome c. The peroxidase activity was significantly inhibited by the low concentration of iron chelator, deferoxamine. The results suggested that the peroxidase activity was associated with iron in the heme of cytochrome c.
Keywords
Cytochrome c; Peroxidase; Radical scavenger; Iron chelator;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 19  (Related Records In Web of Science)
Times Cited By SCOPUS : 17
연도 인용수 순위
1 Wolfenden, B. S.; Wilson, R. L. J. Chem. Soc. Perkin Trans. 1982,II, 805.
2 Kang, J. H. Bull. Korean Chem. Soc. 2004, 25, 625.   DOI   ScienceOn
3 DeBore, D. A.; Clark, R. E. Ann. Thorac. Surg. 1992, 53, 412.   DOI   ScienceOn
4 Lee, C. T.; Liao, S. C.; Hsu, K. T.; Lam, K. K.; Chen, J. B. Ren.Fail. 1999, 21, 665.   DOI   ScienceOn
5 Moore, G. R.; Pettigrew, G. W. Cytochrome c: Evolution,Structure, and Physicochemical Aspects; Springer-Verlag: Berlin,1990.
6 Hashimoto, M.; Takeda, A.; Hsu, L. J.; Takenouchi, T.; Masliah,E. J. Biol. Chem. 1999, 274, 28849.   DOI
7 Boveries, A.; Oshino, N.; Chance, B. Biochem. J. 1972, 128, 617.
8 Radi, R.; Thomson, L.; Rubbo, H.; Prodanov, E. Arch. Biochem.Biophys. 1991, 288, 112.   DOI   ScienceOn
9 Dumont, M. E.; Cardillo, T. S.; Hayes, M. K.; Sherman, F. Mol.Cell Biol. 1991, 11, 5487.
10 Olteanu, A.; Patel, C. N.; Demon, M. M.; Kennedy, S.; Linhoff,M. W.; Minder, C. M.; Potts, P. R.; Deshmukh, M.; Pielak, G. J. Biochem. Biophys. Res. Commun. 2003, 312, 733.   DOI   ScienceOn
11 Prasad, S.; Maiti, N. C.; Mazumdar, S.; Mitra, S. Biochim. Biophys.Acta 2002, 1596, 63.   DOI   ScienceOn
12 Liu, X.; Kim, C. N.; Yan, J.; Jemmerson, R.; Wang, X. Cell 1996,86, 147.   DOI   ScienceOn
13 Yim, M. B.; Chock, P. B.; Stadtman, E. R. J. Biol. Chem. 1993,268, 4099.
14 Childs, R. E.; Bardsley, W. G. Biochem. J. 1975, 145, 93.
15 Kamp, D. W.; Graceffa, P.; Pryor, W. A.; Weitzmn, S. A. FreeRadic. Biol. Med. 1992, 12, 293.   DOI   ScienceOn
16 Rush, J. D.; Koppenol, W. H. J. Am. Chem. Soc. 1988, 110, 4957.   DOI
17 Radi, R.; Sims, S.; Cassina, A.; Turrens, J. F. Free Rad. Biol. Med.1993, 15, 653.   DOI   ScienceOn
18 Lawrence, A.; Jomes, C. M.; Wardman, P.; Burkitt, M. J. J. Biol.Chem. 2003, 278, 29410.   DOI   ScienceOn