• 제목/요약/키워드: Oxidation and coatings

검색결과 187건 처리시간 0.03초

Thermal Shock Behavior of TiN Coating Surface by a Pulse Laser Ablation Method

  • Noh, Taimin;Choi, Youngkue;Jeon, Min-Seok;Shin, Hyun-Gyoo;Lee, Heesoo
    • 대한금속재료학회지
    • /
    • 제50권7호
    • /
    • pp.539-544
    • /
    • 2012
  • Thermal shock behavior of TiN-coated SUS 304 substrate was investigated using a laser ablation method. By short surface ablation with a pulse Nd-YAG laser, considerable surface crack and spalling were observed, whereas there were few oxidation phenomena, such as grain growth of TiN crystallites, nucleation and growth of $TiO_2$ crystallites, which were observed from the coatings quenched from $700^{\circ}C$ in a chamber. The oxygen concentration of the ablated coating surface with the pulse laser also had a lower value than that of the quenched coating surface by Auger electron spectroscopy and electron probe micro analysis. These results were attributed to the fact that the properties of the pulse laser method have a very short heating time and so the diffusion time for oxidation was insufficient. Consequently, it was verified that the laser thermal shock test provides a way to evaluate the influence of the thermal shock load reduced oxidation effect.

Characterization of Ceramic Oxide Layer Produced on Commercial Al Alloy by Plasma Electrolytic Oxidation in Various KOH Concentrations

  • Lee, Jung-Hyung;Kim, Seong-Jong
    • 한국표면공학회지
    • /
    • 제49권2호
    • /
    • pp.119-124
    • /
    • 2016
  • Plasma electrolytic oxidation (PEO) is a promising coating process to produce ceramic oxide on valve metals such as Al, Mg and Ti. The PEO coating is carried out with a dilute alkaline electrolyte solution using a similar technique to conventional anodizing. The coating process involves multiple process parameters which can influence the surface properties of the resultant coating, including power mode, electrolyte solution, substrate, and process time. In this study, ceramic oxide coatings were prepared on commercial Al alloy in electrolytes with different KOH concentrations (0.5 ~ 4 g/L) by plasma electrolytic oxidation. Microstructural and electrochemical characterization were conducted to investigate the effects of electrolyte concentration on the microstructure and electrochemical characteristics of PEO coating. It was revealed that KOH concentration exert a great influence not only on voltage-time responses during PEO process but also on surface morphology of the coating. In the voltage-time response, the dielectric breakdown voltage tended to decrease with increasing KOH concentration, possibly due to difference in solution conductivity. The surface morphology was pancake-like with lower KOH concentration, while a mixed form of reticulate and pancake structures was observed for higher KOH concentration. The KOH concentration was found to have little effect on the electrochemical characteristics of coating, although PEO treatment improved the corrosion resistance of the substrate material significantly.

Understanding Growth mechanism of PEO coating using two-step oxidation process

  • Shin, Seong Hun;Rehman, Zeeshan Ur;Noh, Tae Hwan;Koo, Bon Heun
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.173.2-173.2
    • /
    • 2016
  • A two-step oxidation method was applied on Al6061 to debate the growth mechanism of plasma electrolytic oxidation (PEO) coating. The specimens were first oxidized in the primary electrolyte solution {$Na_3PO_4$ (8g/l), NaOH (2g/l), consequently, the specimens were transferred into a different electrolyte {$K_2ZrF_6$ (8g/l), NaOH (2g/l), $Na_2SiF_6$ (0.5g/l)} for further oxidation. The processes was conducted for various processing times. It was found the second step electrolyte component were reached to inner layers, in contrast to the primary step components which were thrustle to the outer layer. The presence of the secondary component in the inner layers were significantly varied with processing time which suggest the change in growth properties with processing time. further more the inside growth of the secondary component confirmed the increasing trend in the downward growth of the coating layer. The corrosion and hardness properties of the coatings were found highly improved with change in growth features with increasing the processing time.

  • PDF

대기압/진공 조건의 트라이보 시험기를 이용한 박막 코팅의 마찰/마모 특성 비교 (Comparison of Friction and Wear Characteristics of Thin Film Coatings Using Tribotesters at Atmospheric/Vacuum Conditions)

  • 김해진;김대은;김창래
    • Tribology and Lubricants
    • /
    • 제35권6호
    • /
    • pp.389-395
    • /
    • 2019
  • In various industries, thin film coatings are used to improve friction and wear characteristics. Various types of tribotesters are used to evaluate the friction and wear characteristics of such thin film coatings. In this study, we fabricated a micro-tribotester and Tribo-scanning electron microscopy (SEM) to compare the friction and wear characteristics of copper (Cu) coatings under an atmospheric pressure and a vacuum condition, respectively. The reliability of the different types of tribotesters was evaluated by performing calibrations for the sensor to measure the friction forces and normal loads. Using the two different types of devices, the friction and wear tests are conducted at the same experimental conditions excluding environment conditions such as the atmospheric pressure and vacuum condition. The friction coefficient at the vacuum condition is lower than at the atmospheric pressure. This difference in friction characteristics is due to the fact that wear phenomena occur differently according to the atmospheric pressure and vacuum condition. At the atmospheric pressure, the abrasive wear is the main wear mechanism. At the vacuum condition, the adhesive wear is the main wear mechanism. The reason for the difference in the wear mechanism of the Cu coating at the atmospheric pressure and the vacuum condition is that the oxidation phenomenon, which does not appear at the vacuum condition, occurs at the atmospheric pressure; therefore, the characteristics of the Cu coating change accordingly.

가스터빈용 NiCrAlY/(ZrO2-Y2O3) 내열복합코팅의 고온 용융염 부식 (Hot Corrosion of NiCrAlY(ZrO2-Y2O3) Heat Resistant Composite Coatings for Gas Turbines)

  • 이재호;이창희;이동복
    • 대한금속재료학회지
    • /
    • 제48권6호
    • /
    • pp.506-513
    • /
    • 2010
  • The composite coatings of $(ZrO_2-8Y_2O_3)$/(Ni-22Cr-10Al-1Y) were prepared by the air plasma spraying method. They consisted of (Ni,Cr)-rich regions,$(ZrO_2-Y_2O_3)$-rich regions, and $Al_2O_3$-rich regions that were formed by oxidation of Al from (Ni-22Cr-10Al-1Y) during spraying. The coatings corroded at 800 and $900^{\circ}C$ in NaCl-$Na_2SO_4$ molten salts up to 50 hr. Ni, Cr and Al oxidized to NiO, $Cr_2O_3$ and ${\alpha}-Al_2O_3$, respectively. These oxides and $(ZrO_2-Y_2O_3)$ were dissolved off into the molten salts during hot corrosion, which resulted in the ever-lasting corrosion of the composite coatings. Chromium diffused out from the (Ni,Cr)-rich regions and oxidized to $Cr_2O_3$, which was most frequently found as surface scales. Aluminum retained in the (Ni,Cr)-rich regions were similarly diffused out.

Syntheses and properties of Ti2AlN MAX-phase films

  • Zhang, Tengfei;Myoung, Hee-bok;Shin, Dong-woo;Kim, Kwang Ho
    • Journal of Ceramic Processing Research
    • /
    • 제13권spc1호
    • /
    • pp.149-153
    • /
    • 2012
  • Ti2AlN MAX-phase films were synthesized through the post-annealing process of as-deposited Ti-Al-N films. Near amorphous or quasi-crystalline ternary Ti-Al-N films were deposited on Si and Al2O3 substrates by sputtering a Ti2AlN MAX-phase target at room temperature, 300 ℃ and 450 ℃, respectively. A vacuum annealing of those films at 800 ℃ for 1 hour changed those films to crystalline Ti2AlN MAX-phase. The polycrystalline Ti2AlN MAX-phase films exhibited very excellent oxidation resistance due to its characteristics microstructure (nanolaminates), which has potential applications for high-temperature protective coatings. The microstructure and composition of Ti2AlN MAX-phase films were investigated using with a variety of characterization tools.

A Study on Development of Advanced Environmental-Resistant Materials Using Metal Ion Processing

  • Fujita Kazuhisa;Kim Hae-Ji
    • Journal of Mechanical Science and Technology
    • /
    • 제20권10호
    • /
    • pp.1670-1679
    • /
    • 2006
  • The development of the oxidation, wear and corrosion resistant materials that could be used in severe environmental conditions is needed. The elementary technologies for surface modification include ion implantation and/or thin film coating. Furthermore, in order to develop ion implantation technique to the specimens with three-dimensional shapes, plasma-based ion implantation (PBII) techniques were investigated. As a result, it was found that the ion implantation and/or thin film coating used in this study were/was effective for improving the properties of materials, which include implantations of various kinds of ions into TiAl alloy, TiN films formed on surface of base material and coatings in high-temperature steam. The techniques proposed in this study provide useful information for all of the material systems required to use at elevated temperature. For the practical applications, several results will be presented along with laboratory test results.

High Temperature Corrosion of Cr(III) Coatings in N2/0.1%H2S Gas

  • Lee, Dong Bok;Yuke, Shi
    • 한국표면공학회지
    • /
    • 제52권3호
    • /
    • pp.111-116
    • /
    • 2019
  • Chromium was coated on a steel substrate by the Cr(III) electroplating method, and corroded at $500-900^{\circ}C$ for 5 h in $N_2/0.1%H_2S-mixed$ gas to study the high-temperature corrosion behavior of the Cr(III) coating in the highly corrosive $H_2S-environment$. The coating consisted of (C, O)-supersaturated, nodular chromium grains with microcracks. Corrosion was dominated by oxidation owing to thermodynamic stability of oxides compared to sulfides and nitrides. Corrosion initially led to formation of the thin $Cr_2O_3$ layer, below which (S, O)-dissolved, thin, porous region developed. As corrosion progressed, a $Fe_2Cr_2O_4$ layer formed below the $Cr_2O_3$ layer. The coating displayed relatively good corrosion resistance due to formation of the $Cr_2O_3$ scale and progressive sealing of microcracks.

용융아연 도금층의 응고에 미치는 콜로이달 실리카의 영향 (Effect of Colloidal Silica on the Solidification of Galvanized Coatings)

  • 김상헌;정원섭;김형인
    • 한국표면공학회지
    • /
    • 제33권5호
    • /
    • pp.381-386
    • /
    • 2000
  • It was found that colloidal silica sprayed to the galvanized steel sheet apparently made the molten zinc layer solidified to be the randomly oriented fine grains. Its spraying effect was also little affected by steel temperature that had been considered as one of the major operating factors in this process. From the results of surface analysis, it is considered that aluminum dissolved in coating layer reduces silica to silicon by the oxidation-reduction reaction, and that the reduced silicon acts as a more effective nucleus in solidification reaction than phosphate salt, siica and alumina.

  • PDF

A Method for Real Time Monitoring of Oxide Thickness in Plasma Electrolytic Oxidation of Titanium

  • Yoo, Kwon-Jong;Lee, Yong-K.;Lee, Kang-Soo
    • Corrosion Science and Technology
    • /
    • 제9권1호
    • /
    • pp.8-11
    • /
    • 2010
  • During PEO (plasma-electrolytic-oxidation) treatment of titanium, the relationship between the thickness of oxide film and the measured electrical information was investigated. A simple real time monitoring method based on the electrical information being gathered during PEO treatment is proposed. The proposed method utilizes the current flowing from a high frequency voltage source to calculate the resistance of an oxide film, which is converted into the thickness of an oxide film. This monitoring method can be implemented in PEO system in which an oxide film is grown by constant or pulsed voltage/current sources.