DOI QR코드

DOI QR Code

High Temperature Corrosion of Cr(III) Coatings in N2/0.1%H2S Gas

  • Lee, Dong Bok (School of Advanced Materials Science and Engineering, Sungkyunkwan University) ;
  • Yuke, Shi (School of Advanced Materials Science and Engineering, Sungkyunkwan University)
  • Received : 2019.03.26
  • Accepted : 2019.05.09
  • Published : 2019.06.30

Abstract

Chromium was coated on a steel substrate by the Cr(III) electroplating method, and corroded at $500-900^{\circ}C$ for 5 h in $N_2/0.1%H_2S-mixed$ gas to study the high-temperature corrosion behavior of the Cr(III) coating in the highly corrosive $H_2S-environment$. The coating consisted of (C, O)-supersaturated, nodular chromium grains with microcracks. Corrosion was dominated by oxidation owing to thermodynamic stability of oxides compared to sulfides and nitrides. Corrosion initially led to formation of the thin $Cr_2O_3$ layer, below which (S, O)-dissolved, thin, porous region developed. As corrosion progressed, a $Fe_2Cr_2O_4$ layer formed below the $Cr_2O_3$ layer. The coating displayed relatively good corrosion resistance due to formation of the $Cr_2O_3$ scale and progressive sealing of microcracks.

Keywords

PMGHBJ_2019_v52n3_111_f0001.png 이미지

Fig. 1. Cr(III) coating. (a) SEM top view, (b) SEM cross-sectional image, (c) EDS spectra of spot 1, 2 and 3, (d) XRD pattern, (e) XPS spectra of Cr2P, C1S, and O1S.

PMGHBJ_2019_v52n3_111_f0002.png 이미지

Fig. 2. Cr(III) coating after corrosion at 500℃ for 5 h in N2/0.1%H2S gas. (a) SEM top view, (b) SEM crosssectional image, (c) XRD pattern, (d) XPS spectra of Cr2P, C1S, O1S, Fe2P, N1S, and S2P.

PMGHBJ_2019_v52n3_111_f0003.png 이미지

Fig. 3. Cr(III) coating after corrosion at 600℃ for 5 h in N2/0.1%H2S gas. (a) SEM top view, (b) SEM crosssectional image, (c) EDS line profiles along A-B shown in (b).

PMGHBJ_2019_v52n3_111_f0004.png 이미지

Fig. 4. Cr(III) coating after corrosion at 700℃ for 5 h in N2/0.1%H2S gas. (a) SEM top view, (b) SEM crosssectional image, (c) XRD pattern.

PMGHBJ_2019_v52n3_111_f0005.png 이미지

Fig. 5. Cr(III) coating after corrosion at 800℃ for 5 h in N2/0.1%H2S gas. (a) XRD pattern, (b) EPMA crosssectional image, (c) EPMA maps of (b).

PMGHBJ_2019_v52n3_111_f0006.png 이미지

Fig. 6. Cr(III) coating after corrosion at 900℃ for 5 h in N2/0.1%H2S gas. (a) XRD pattern, (b) EPMA crosssectional image, (c) EPMA maps of (b).

Table 1. Bath composition and electrolysis conditions

PMGHBJ_2019_v52n3_111_t0001.png 이미지

References

  1. G. Hong, K.S. Siow, G. Zhiqiang, A.K. Hsieh, Hard chromium plating from trivalent chromium solution, Plat. Surf. Finish., 88 (2001) 69-75.
  2. S.C. Kwon, M. Kim, S.U. Park, D.Y. Kim, D. Kim, K.S. Nam, Y. Choi, Characterization of intermediate Cr-C layer fabricated by electrodeposition in hexavalent and trivalent chromium baths, Surf. Coat. Technol., 183 (2004) 151-156. https://doi.org/10.1016/j.surfcoat.2003.09.069
  3. S. Hoshino, H.A. Laitinen, G.B. Hoflund, The electrodeposition and properties of amorphous chromium films prepared from chromic acid solutions, J. Electrochem. Soc., 133 (1986) 681-685. https://doi.org/10.1149/1.2108653
  4. A. Liang, Q. Liu, B. Zhang, L. Ni, J. Zhang, Preparation of crystalline chromium coating on Cu substrate directly by DC electrodepositing from wholly environmentally acceptable Cr(III) electrolyte, Mater. Lett., 119 (2014) 131-134. https://doi.org/10.1016/j.matlet.2013.12.034
  5. G.B. Hoflund, D.A. Asbury, S.J. Babb, A.L. Grogan, H.A. Laitinen, S. Hoshino, A surface study of amorphous chromium films electrodeposited from chromic acid solutions. Part I, J. Vac. Sci. Technol., A 4 (1986) 26-30. https://doi.org/10.1116/1.573493
  6. D. Kim, M. Kim, K.S. Nam, D. Chang, S.C. Kwon, Duplex coating for improvement of corrosion resistance in chromium deposit, Surf. Coat. Technol. 169-170 (2003) 650-654. https://doi.org/10.1016/S0257-8972(03)00107-5
  7. K.S. Nam, K.H. Lee, S.C. Kwon, D.Y. Lee, Y.S. Song, Improved wear and corrosion resistance of chromium(III) plating by oxynitrocarburising and steam oxidation, Mater. Lett., 58 (2014) 3540-3544. https://doi.org/10.1016/j.matlet.2004.06.038
  8. D.B. Lee, Oxidation of Cr-C electroplating between 400 and $900^{\circ}C$ in air, Mater. Corros., 59 (2008) 598-601. https://doi.org/10.1002/maco.200804143
  9. R. John, Sulfidation and mixed gas corrosion of alloys, in Shreir's Corrosion (4th edn), Vol. 1, ed. by R.A Cottis, M.J. Graham, R. Lindsay, S.B. Lyon, J.A. Richardson, J.D. Scantlebury, F.H. Stott, Elsevier, USA (2010) 240-271.
  10. G.Y. Lai, High-Temperature Corrosion and Materials Applications, ASM International, USA (2007).
  11. M. Takaya, M. Matsunaga, T. Otaka, Electrodeposition of Cr-SiC composite coatings and their wear characteristics, Plat. Surf. Finish., 38 (1987) 97-101.
  12. M. Andersson, J. Hogstrom, S. Urbonaite, A. Furlan, L. Nyholm, U. Jansson, Deposition and characterization of magnetron sputtered amorphous Cr-C films, Vacuum, 86 (2012) 1408-1416. https://doi.org/10.1016/j.vacuum.2012.01.021
  13. V.A. Safonov, H. Habazaki, P. Glatzel, L. A. Fishgoit, O.A. Drozhzhin, S. Lafuerza, O.V. Safonova, Application of valence-to-core X-ray emission spectroscopy for identification and estimation of amount of carbon covalently bonded to chromium in amorphous Cr-C coatings prepared by magnetron sputtering, Appl. Surf. Sci., 427 (2018) 566-572. https://doi.org/10.1016/j.apsusc.2017.08.219
  14. L. Yate, L. Martinez-de-Olcoz, J. Esteve, A. Lousa, Ultra low nanowear in novel chromium/amorphous chromium carbide nanocomposite films, Appl. Surf. Sci., 420 (2017) 707-713. https://doi.org/10.1016/j.apsusc.2017.05.203
  15. A.A. Edigaryan, V.A. Safonov, E.N. Lubnin, L.N. Vykhodtseva, G.E. Chusova, Y.M. Polukaov, Properties and preparation of amorphous chromium carbide electroplates, Electochem. Acta, 47 (2002) 2775-2786. https://doi.org/10.1016/S0013-4686(02)00163-9
  16. R.E. Lobnig, H.J. Grabke, Mechanisms of simultaneous sulfidation and oxidation of Fe-Cr and Fe-Cr-Ni-alloys and of the failure of protective chromia scales, Corros. Sci., 30 (1990) 1045-1071. https://doi.org/10.1016/0010-938X(90)90211-M
  17. H.J. Grabke, High temperature corrosion in complex, multi-reactant gaseous environments, in: J.F. Norton (Ed.) High Temperature Materials Corrosion in Coal Gasification Atmospheres, Elsevier Applied Science Publishers, England (1984) 59-82.
  18. G. Simkovich, The change in growth mechanism of scales due to reactive elements, Oxid. Met., 44 (1995) 501-504. https://doi.org/10.1007/BF01051040