Browse > Article
http://dx.doi.org/10.5695/JKISE.2019.52.3.111

High Temperature Corrosion of Cr(III) Coatings in N2/0.1%H2S Gas  

Lee, Dong Bok (School of Advanced Materials Science and Engineering, Sungkyunkwan University)
Yuke, Shi (School of Advanced Materials Science and Engineering, Sungkyunkwan University)
Publication Information
Journal of the Korean institute of surface engineering / v.52, no.3, 2019 , pp. 111-116 More about this Journal
Abstract
Chromium was coated on a steel substrate by the Cr(III) electroplating method, and corroded at $500-900^{\circ}C$ for 5 h in $N_2/0.1%H_2S-mixed$ gas to study the high-temperature corrosion behavior of the Cr(III) coating in the highly corrosive $H_2S-environment$. The coating consisted of (C, O)-supersaturated, nodular chromium grains with microcracks. Corrosion was dominated by oxidation owing to thermodynamic stability of oxides compared to sulfides and nitrides. Corrosion initially led to formation of the thin $Cr_2O_3$ layer, below which (S, O)-dissolved, thin, porous region developed. As corrosion progressed, a $Fe_2Cr_2O_4$ layer formed below the $Cr_2O_3$ layer. The coating displayed relatively good corrosion resistance due to formation of the $Cr_2O_3$ scale and progressive sealing of microcracks.
Keywords
Chromium; carbon; electroplating; $H_2S$ corrosion; oxidation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. Hong, K.S. Siow, G. Zhiqiang, A.K. Hsieh, Hard chromium plating from trivalent chromium solution, Plat. Surf. Finish., 88 (2001) 69-75.
2 S.C. Kwon, M. Kim, S.U. Park, D.Y. Kim, D. Kim, K.S. Nam, Y. Choi, Characterization of intermediate Cr-C layer fabricated by electrodeposition in hexavalent and trivalent chromium baths, Surf. Coat. Technol., 183 (2004) 151-156.   DOI
3 S. Hoshino, H.A. Laitinen, G.B. Hoflund, The electrodeposition and properties of amorphous chromium films prepared from chromic acid solutions, J. Electrochem. Soc., 133 (1986) 681-685.   DOI
4 A. Liang, Q. Liu, B. Zhang, L. Ni, J. Zhang, Preparation of crystalline chromium coating on Cu substrate directly by DC electrodepositing from wholly environmentally acceptable Cr(III) electrolyte, Mater. Lett., 119 (2014) 131-134.   DOI
5 G.B. Hoflund, D.A. Asbury, S.J. Babb, A.L. Grogan, H.A. Laitinen, S. Hoshino, A surface study of amorphous chromium films electrodeposited from chromic acid solutions. Part I, J. Vac. Sci. Technol., A 4 (1986) 26-30.   DOI
6 D. Kim, M. Kim, K.S. Nam, D. Chang, S.C. Kwon, Duplex coating for improvement of corrosion resistance in chromium deposit, Surf. Coat. Technol. 169-170 (2003) 650-654.   DOI
7 K.S. Nam, K.H. Lee, S.C. Kwon, D.Y. Lee, Y.S. Song, Improved wear and corrosion resistance of chromium(III) plating by oxynitrocarburising and steam oxidation, Mater. Lett., 58 (2014) 3540-3544.   DOI
8 D.B. Lee, Oxidation of Cr-C electroplating between 400 and $900^{\circ}C$ in air, Mater. Corros., 59 (2008) 598-601.   DOI
9 R. John, Sulfidation and mixed gas corrosion of alloys, in Shreir's Corrosion (4th edn), Vol. 1, ed. by R.A Cottis, M.J. Graham, R. Lindsay, S.B. Lyon, J.A. Richardson, J.D. Scantlebury, F.H. Stott, Elsevier, USA (2010) 240-271.
10 G.Y. Lai, High-Temperature Corrosion and Materials Applications, ASM International, USA (2007).
11 M. Takaya, M. Matsunaga, T. Otaka, Electrodeposition of Cr-SiC composite coatings and their wear characteristics, Plat. Surf. Finish., 38 (1987) 97-101.
12 M. Andersson, J. Hogstrom, S. Urbonaite, A. Furlan, L. Nyholm, U. Jansson, Deposition and characterization of magnetron sputtered amorphous Cr-C films, Vacuum, 86 (2012) 1408-1416.   DOI
13 R.E. Lobnig, H.J. Grabke, Mechanisms of simultaneous sulfidation and oxidation of Fe-Cr and Fe-Cr-Ni-alloys and of the failure of protective chromia scales, Corros. Sci., 30 (1990) 1045-1071.   DOI
14 V.A. Safonov, H. Habazaki, P. Glatzel, L. A. Fishgoit, O.A. Drozhzhin, S. Lafuerza, O.V. Safonova, Application of valence-to-core X-ray emission spectroscopy for identification and estimation of amount of carbon covalently bonded to chromium in amorphous Cr-C coatings prepared by magnetron sputtering, Appl. Surf. Sci., 427 (2018) 566-572.   DOI
15 L. Yate, L. Martinez-de-Olcoz, J. Esteve, A. Lousa, Ultra low nanowear in novel chromium/amorphous chromium carbide nanocomposite films, Appl. Surf. Sci., 420 (2017) 707-713.   DOI
16 A.A. Edigaryan, V.A. Safonov, E.N. Lubnin, L.N. Vykhodtseva, G.E. Chusova, Y.M. Polukaov, Properties and preparation of amorphous chromium carbide electroplates, Electochem. Acta, 47 (2002) 2775-2786.   DOI
17 H.J. Grabke, High temperature corrosion in complex, multi-reactant gaseous environments, in: J.F. Norton (Ed.) High Temperature Materials Corrosion in Coal Gasification Atmospheres, Elsevier Applied Science Publishers, England (1984) 59-82.
18 G. Simkovich, The change in growth mechanism of scales due to reactive elements, Oxid. Met., 44 (1995) 501-504.   DOI