• Title/Summary/Keyword: Oxidation Rate Constant

Search Result 171, Processing Time 0.026 seconds

A Study for Kinetics and Oxidation Reaction of Substituted Benzyl Alcohols Using (C10H8N2H)2Cr2O7 ((C10H8N2H)2Cr2O7를 이용한 치환 벤질 알코올류의 산화반응과 반응속도에 관한 연구)

  • Park, Young Cho;Kim, Young Sik;Kim, Soo Jong
    • Applied Chemistry for Engineering
    • /
    • v.28 no.5
    • /
    • pp.597-600
    • /
    • 2017
  • $(C_{10}H_8N_2H)_2Cr_2O_7$ was synthesized by reacting 4,4'-bipyridine and chromium (VI) trioxide. The structure of the product was characterized with FT-IR (infrared spectroscopy) and elemental analysis. The oxidation of benzyl alcohol using $(C_{10}H_8N_2H)_2Cr_2O_7$ in various solvents showed that the reactivity increased with the increase of the solvent dielectric constant, in the order of DMF (N,N'-dimethylformamide) > acetone > chloroform > cyclohexane. In the presence of DMF, an acidic catalyst such as $H_2SO_4$ $(C_{10}H_8N_2H)_2Cr_2O_7$ oxidized benzyl alcohol (H) and its derivatives ($p-OCH_3$, $m-CH_3$, $m-OCH_3$, m-Cl, $m-NO_2$). Electron donating substituents accelerated the reaction rate, whereas electron acceptor groups retarded the reaction rate. Hammett reaction constant (${\rho}$) was -0.70 (308 K). The observed experimental data were used to rationalize the hydride ion transfer in the rate determining step.

Optimal Pumping Rate of a Water Well at Imgokri, Sangju City (상주시 임곡리 굴착공의 적정양수량 결정)

  • Cho, Byong-Wook;Yun, Uk;Moon, Sang-Ho;Lee, Byeong-Dae;Cho, Soo-Young;Kim, YongCheol;Hwang, Seho;Shin, Jehyun;Ha, Kyoochul
    • The Journal of Engineering Geology
    • /
    • v.27 no.3
    • /
    • pp.255-265
    • /
    • 2017
  • We have determined the optimal pumping rate of the PW-2 water well (depth=100 m) at Imgokri, Sangju City. Cutting analysis and geophysical logging data reveal water-producing horizons at 26.1-26.5, 28.0-30.0, 33, 58, and 71 m. For pumping rates of 40, 55, 70, 90, and $132m^3/d$ over 70 days, the estimated drawdown from the PW-2 well was 6.48, 11.56, 18.07, 28.99 and 60.26 m, respectively. During a constant-rate pumping test at a rate of $117m^3/d$, the cone of depression intersected an impermeable boundary after 120-150 min of pumping. Therefore, we consider the critical pumping rate for well PW-2 to be $90m^3/d$. After pumping at $90m^3/d$ for 70 days, the calculated drawdown was 28.82-31.27 m. We suggest an optimal pumping rate for well PW-2 of $70-90m^3/d$, as the optimal pumping rate should be similar to the critical pumping rate. Sharp increases in the slope of the time-drawdown relationship, dissolved oxygen concentrations, and oxidation-reduction potential during the constant-rate pumping test indicate the limited development of bedrock aquifers around PW-2.

Kinetics and Mechanism of the Oxidation of Alcohols by C9H7NHCrO3Cl (C9H7NHCrO3Cl에 의한 알코올류의 산화반응에서 속도론과 메카니즘)

  • Park, Young-Cho;Kim, Young-Sik;Kim, Soo-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.378-384
    • /
    • 2018
  • $C_9H_7NHCrO_3Cl$ was synthesized by reacting $C_9H_7NH$ with chromium (VI) trioxide. The structure of the product was characterized by FT-IR (Fourier transform infrared) spectroscopy and elemental analysis. The oxidation of benzyl alcohol by $C_9H_7NHCrO_3Cl$ in various solvents showed that the reactivity increased with increasing dielectric constant(${\varepsilon}$) in the following order: DMF (N,N'-dimethylformamide) > acetone > chloroform > cyclohexane. The oxidation of alcohols was examined by $C_9H_7NHCrO_3Cl$ in DMF. As a result, $C_9H_7NHCrO_3Cl$ was found to be an efficient oxidizing agent that converts benzyl alcohol, allyl alcohol, primary alcohols, and secondary alcohols to the corresponding aldehydes or ketones (75%-95%). The selective oxidation of alcohols was also examined by $C_9H_7NHCrO_3Cl$ in DMF. $C_9H_7NHCrO_3Cl$ was the selective oxidizing agent of benzyl, allyl and primary alcohol in the presence of secondary ones. In the presence of DMF with an acidic catalyst, such as $H_2SO_4$, $C_9H_7NHCrO_3Cl$ oxidized benzyl alcohol (H) and its derivatives ($p-OCH_3$, $m-CH_3$, $m-OCH_3$, m-Cl, and $m-NO_2$). Electron donating substituents accelerated the reaction rate, whereas electron acceptor groups retarded the reaction rate. The Hammett reaction constant (${\rho}$) was -0.69 (308K). The observed experimental data were used to rationalize hydride ion transfer in the rate-determining step.

Surface Characteristics and Photocatalytic Propertiy of B Doped TiO2 Layer Synthesized by Plasma Electrolytic Oxidation Process (Plasma Electrolytic Oxidation 방식으로 제조된 B Doped TiO2의 표면특성과 광촉매 특성)

  • Lee, Jong-Ho;Lee, Young-Ki;Kim, Young-Jig;Oh, Han-Jun
    • Korean Journal of Materials Research
    • /
    • v.31 no.10
    • /
    • pp.552-561
    • /
    • 2021
  • For the purpose of manufacturing a high efficiency TiO2 photocatalyst, B-doped TiO2 photocatalysts are synthesized using a plasma electrolytic oxidation method in 0.5 M H2SO4 electrolyte with different concentrations of H3BO3 as additive. For the B doped TiO2 layer fabricated from sulfuric electrolyte having a higher concentration of H3BO3 additive, the main XRD peaks of (101) and (200) anatase phase shift gradually toward the lower angle direction, indicating volume expansion of the TiO2 anatase lattice by incorporation of boron, when compared with TiO2 layers formed in sulfuric acid with lower concentration of additive. Moreover, XPS results indicate that the center of the binding energy peak of B1s increases from 191.45 eV to 191.98 eV, which suggests that most of boron atoms are doped interstitially in the TiO2 layer rather than substitutionally. The B doped TiO2 catalyst fabricated in sulfuric electrolyte with 1.0 M H3BO3 exhibits enhanced photocurrent response, and high efficiency and rate constant for dye degradation, which is ascribed to the synergistic effect of the new impurity energy band induced by introducing boron to the interstitial site and the improvement of charge transfer reaction.

Electrochemical nitrate reduction using a cell divided by ion-exchange membrane

  • Lee, Jongkeun;Cha, Ho Young;Min, Kyung Jin;Cho, Jinwoo;Park, Ki Young
    • Membrane and Water Treatment
    • /
    • v.9 no.3
    • /
    • pp.189-194
    • /
    • 2018
  • Electrochemical reduction of nitrate was studied using Zn, Cu and (Ir+Ru)-Ti cathodes and Pt/Ti anode in a cell divided by an ion exchange membrane. During electrolysis, effects of the different cathode types on operating parameters (i.e., voltage, temperature and pH), nitrate removal efficiency and by-products (i.e., nitrite and ammonia) formation were investigated. Ammonia oxidation rate in the presence of NaCl was also determined using the different ratios of hypochlorous acid to ammonia. The operating parameter values were similar for all types of cathode materials and were maintained relatively constant. Nitrate was well reduced and converted mostly to ammonia using Zn and Cu cathodes. Ammonia, produced as a by-product of nitrate reduction, was oxidized in the presence of NaCl in the electrochemical process and the oxidation performance was enhanced upon increasing the hypochlorous acid-to-ammonia ratio to 1.09:1. Zn and Cu cathodes promoted the nitrate reduction to ammonia and the produced ammonia was finally removed from solution by reacting with hypochlorite ions. Using Zn or Cu cathodes, instead of noble metal cathodes, in the electrochemical process can be an alternative technology for nitrate-containing wastewater treatment.

Fed-Batch Sorbose Fermentation Using Pulse and Multiple Feeding Strategies for Productivity Improvement

  • Giridhar, R.;Srivastava, A.K.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.5
    • /
    • pp.340-344
    • /
    • 2000
  • Microbial oxidation of D-sorbitol to L-sorbose by Acetobacter suboxydans is of commercial importance since it is the only biochemical process in vitamin C synthesis. The main bottleneck in the batch oxidation of sorbitol to sorbose is that the process is severely inhibited by sorbitol. Suitable fed-batch fermentation designs can eliminate the inherent substrate inhibition and improve sorbose productivity. Fed-batch sorbose fermentations were conducted by using two nutrient feeding strategies. For fed-batch fermentation with pulse feeding, highly concentrated sorbitor (600g/L) along with other nutrients were fed intermittently in four pulses of 0.5 liter in response to the increased DO signal. The fed-batch fermentation was over in 24h with a sorbose productivity of 13.40g/L/h and a final sorbose concentration of 320.48g/L. On the other hand, in fed-batch fermentation with multiple feeds, two pulse feeds of 0.5 liter nutrient medium containing 600g/L sorbitol was followed by the addition of 1.5 liter nutrient medium containing 600g/L sorbitol at a constant feed rate of 0.36L/h till the full working capacity of the reactor. The fermentation was completed in 24h with an enhanced sorbose productivity of 15.09g/L/h and a sorbose concentration of 332.60g/L. The sorbose concentration and productivity obtained by multiple feeding of nutrients was found to be higher than that obtained by pulse feeding and was therefore a better strategy for fed-batch sorbose fermentation.

  • PDF

Estimation of Energetic and Charge Transfer Properties of Iridium(III) Bis(2-phenylpyridinato-N,C2')acetylacetonate by Electrochemical Methods

  • Cha, Joeun;Ko, Eun-Song;Shin, Ik-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.96-100
    • /
    • 2017
  • Iridium(III) bis(2-phenylpyridinato-$N,C^{2^{\prime}}$)acetylacetonate ($(ppy)_2Ir(acac)$), a green dopant used in organic light-emitting devices (OLEDs), was subjected to electrochemical characterization to estimate its formal oxidation potential ($E^{o^{\prime}}$), HOMO energy level ($E_{HOMO}$), electron transfer rate constant ($k^{o^{\prime}}$), and diffusion coefficient ($D_o$). The employed combination of voltammetric methods, i.e., cyclic voltammetry (CV), chronocoulometry (CC), and the Nicholson method, provided meaningful insights into the electron transfer kinetics of $(ppy)_2Ir(acac)$, allowing the determination of $k^{o^{\prime}}$ and $D_o$. The quasi-reversible oxidation of $(ppy)_2Ir(acac)$ furnished information on $E^{o^{\prime}}$ and $E_{HOMO}$, allowing the latter parameter to be easily estimated by electrochemical methods without relying on expensive and complex ultraviolet photoemission spectroscopic (UPS) measurements.

Two-Phase Chemical Oxidation of Pyrene

  • Choi, Young-Ik
    • Journal of Environmental Science International
    • /
    • v.16 no.3
    • /
    • pp.247-253
    • /
    • 2007
  • Polycyclic aromatic hydrocarbons (PAHs) are a major concern because of their potential mutagenic and carcinogenic risks to human beings. One of these harmful, yet commonly observed PAHs is pyrene. Pyrene is one of the 16 PAHs listed by the United States Environmental Protection Agency as priority pollutants. The purposes of this research are to develop a method of pretreatment for PAH contaminants prior to a typical biological treatment and to demonstrate the biodegradablity of these compounds. Since pyrene is non-polar, hexane was chosen as a solvent to effectively dissolve pyrene. Pyrene solutions were treated with ozone, as it has hish oxidation capacity and electrophilic character. The intermediates and byproducts of pyrene were dissolved in alkaline water at pH 11.4 and neutralized to test for $BOD_5$, COD, and toxicity. These solutions were further ozonated and assessed of biodegradability. The first-order rate constant to was found to be between $0.121day^{-1}$ and $0.081 day^{-1}$, depending on the duration of reozonation. The $BOD_5/COD$ ratio was found to 0.66. The toxicity test showed that after 10 min of reozonation time, the byproducts and intermediates of pyrene were within the lion-toxic range of ${\pm}10%$ inhibition for E-Coli bacteria.

A Study for Kinetics and Oxidation Reaction of Substituted Benzyl Alcohols using Cr(VI)-Heterocyclic Complex(Cr(VI)-Isoquinoline) (Cr(VI)-헤테로고리 착물(Cr(VI)-Isoquinoline)를 이용한 치환 벤질 알코올류의 산화반응과 속도론에 관한 연구)

  • Park, Young-Cho;Kim, Young-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.6000-6007
    • /
    • 2013
  • Cr(VI)-heterocyclic complex[Cr(VI)-isoquinoline] was synthesized by the reaction between of heterocyclic compound(isoquinoline) and chromium trioxide, and characterized by IR and ICP analysis. The oxidation of benzyl alcohol using Cr(VI)-isoquinoline in various solvents showed that the reactivity increased with the increase of the dielectric constant(${\varepsilon}$), in the order : cyclohexene$CH_3$, m-Br, m-$NO_2$). Electron- donating substituents accelerated the reaction, whereas electron acceptor groups retarded the reaction. The Hammett reaction constant(${\rho}$) was -0.69(308K). The observed experimental data have been ratiolized. The hydride ion transfer causes the prior formation of a chromate ester in the rate-determining step.

A Study for Kinetics and Oxidation Reaction of Alcohols by Cr(VI)-4-(Dimethylamino)pyridine (크롬(VI)-4-(Dimethylamino)pyridine에 의한 알코올류의 산화반응과 반응속도에 관한 연구)

  • Kim, Young-Sik;Park, Young-Cho;Kim, Young Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.499-505
    • /
    • 2013
  • Cr(VI)-4-(dimethylamino)pyridine[4-(dimethylamino)pyridinium chlorochromate] was synthesized by the reaction of 4-(dimethylamino)pyridine with chromium trioxide in 6M-HCl, and characterized by IR, ICP. The oxidation of benzyl alcohol using 4-(dimethylamino)pyridinium chlorochromate in various solvents showed that the reactivity increased with the increase of the dielectric constant(${\varepsilon}$), in the order: cyclohexene$H_2SO_4$ solution), 4-(dimethylamino)pyridinium chlorochromate oxidized benzyl alcohol and its derivatives(p-$OCH_3$, m-$CH_3$, H, m-$OCH_3$, m-Cl, m-$NO_2$) smoothly in DMF. Electron-donating substituents accelerated the reaction, whereas electron acceptor groups retarded the reaction. The Hammett reaction constant(${\rho}$) was -0.68(303K). The observed experimental data was used to rationalize the hydride ion transfer in the rate-determining step.